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Contour Model-Based Hand-Gesture Recognition
Using the Kinect Sensor

Yuan Yao, Member, IEEE, and Yun Fu, Senior Member, IEEE

Abstract— In RGB-D sensor-based pose estimation, training
data collection is often a challenging task. In this paper, we
propose a new hand motion capture procedure for establishing
the real gesture data set. A 14-patch hand partition scheme is
designed for color-based semiautomatic labeling. This method is
integrated into a vision-based hand gesture recognition frame-
work for developing desktop applications. We use the Kinect
sensor to achieve more reliable and accurate tracking under
unconstrained conditions. Moreover, a hand contour model is
proposed to simplify the gesture matching process, which can
reduce the computational complexity of gesture matching. This
framework allows tracking hand gestures in 3-D space and
matching gestures with simple contour model, and thus supports
complex real–time interactions. The experimental evaluations and
a real-world demo of hand gesture interaction demonstrate the
effectiveness of this framework.

Index Terms— Hand gesture recognition, human–computer
interaction (HCI), RGB-D sensor.

I. INTRODUCTION

HUMAN–COMPUTER interaction (HCI) is an important
driving force for computer vision and pattern classifi-

cation fields. With the development of mobile devices and
sensors, hand gestures have become a popular way to interact
with Tablet PC, phones, and personal computers. This trend
is not only occurring on the 2-D screen, but also happens in
the 3-D world.

However, color images cannot provide enough information
for tracking hands in 3-D space because much of the spatial
position information has to be inferred and this leads to
multiple 2-D–3-D mappings.

New sensors, such as Kinect, Xtion, and Leap Motion, can
provide the ability to monitor 3-D motions, and thus make it
simple to build systems for HCI via 3-D hand movements. This
technological progress is very important for applications in the
domain of the arts [1], computer gaming [2], computer-aided
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design [3], and remote control for robots [4]. Combining RGB
and depth data will reduce the complexity of target tracking in
complicated environments. In addition, the depth information
can be used to avoid ambiguous mappings between images
and hand poses, and generate gestures with clear semantics.
In the future, we can expect more devices with built-in depth
sensors.

Many hand gesture recognition methods are based on the
body of work related to body pose estimation [5]. The state-
of-the-art of body estimation techniques began to make use
of depth sensors to track human body parts [6], [7]. In recent
research, simple pixel features [8] and patches [9] were used as
input. They use a random decision forest to recognize different
body parts and the orientations of a head, respectively. These
methods can be used directly in hand gesture recognition.
However, classifiers in these methods must be trained on a
large data set because the recognition process is sensitive to
appearance variations of the target shape and backgrounds.
Such data set containing large variations is often hard to
achieve.

For those applications using finger movements, accuracy
is the primary consideration. It requires the hand to move
in a constrained desktop environment and be close to the
camera. In environments where the hand is close to the back-
ground, segmenting that hand becomes difficult as the back-
ground features can be mistaken for the hand and vice versa.
In addition, the shape of the hand and the possible hand
motions are more complex than those found in the rest of the
human body. This makes it difficult to apply the assumptions
made by previous research on body pose estimation.

There are two main challenges in developing hand gesture-
based systems. The first is how to locate the naked hand and
reconstruct the hand pose from raw data. There has been much
investigation into hand tracking, hand pose estimation and
gesture recognition. Erol et al. [5] summarized the difficulties
faced by these efforts. From the perspective of application
development, we summarize the hand tracking, hand pose
estimation, and gesture recognition into a single challenge of
reconstructing the hand pose from raw data. The second is
how to represent the hand model, so that the hand gesture
database can be efficiently acquired and corresponding index-
ing and searching strategies can be designed to satisfy the
real-time hand gesture recognition requirements. Hand models
are important for training and recognition accuracy. However,
collecting the labeled data required for training is difficult.

We propose a new framework to solve the aforementioned
problems. First, we segment a hand into different parts
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and use a 3-D contour model to represent the hand pose
configuration. Then, a feature fusion technique [10] is used
to unify color and depth information for accurate hand local-
ization. We use a pixel classifier to recognize different parts
of a hand. To reduce the workload of establishing real training
data, we develop a semiautomatic labeling procedure, which
uses both RGB data and depth data to label colored hand
patches. Finally, we generate the 3-D contour model from
the classified pixels. Instead of matching between images, the
3-D contour model can be coded into strings. Therefore, the
correspondence sample gesture can be found by the nearest
neighbor method. Using this framework, we develop a hand
gesture-controlled desktop application. Experiments show that
gesture matching can speed up efficiently to satisfy real-time
recognition requirements.

This paper is based on [10] with substantial extensions.
A more comprehensive survey and a redesigned training data
labeling scheme are presented, as well as a new application
framework and an application demonstration. This paper is
organized as follows. In Section II, we discuss the related
work, especially the depth sensors-based hand gesture recog-
nition. Our hand gesture recognition framework is introduced
in Section III. Section IV shows the details of training database
collection. Section V describes the process of segmenting
hand patches in images. The hand contour model and gesture
matching strategy are described in Section VI. Experimental
evaluations and the application demonstration are given in
Sections VII and VIII, respectively. We finally conclude with
future work in Section IX.

II. RELATED WORK

Over the past decades, many hand–gesture-based interaction
prototyping systems have been developed. Ali et al. [5]
reviewed some of this paper. From a technical point of
view, the methodologies of pose estimation used in these
systems can be roughly divided into model-based generative
methods [11], regression-based methods, classification-based
methods and exemplar-based methods [12].

Most of these methods do not focus on detecting hands.
Some of them directly use marker-based motion-capture
devices, such as a glove fixed with LEDs [13], gloves with
colored patterns [14], and data glove [15] to capture the
motion of palms and fingers. The accuracy of these systems
is determined by the hardware, which is less susceptible to
interference from the environment.

However, hardware configurations for these systems are
often expensive, inconvenient, and uncomfortable, which make
them difficult to use outside the laboratory environment.
People are most likely to adapt to tools for HCI that are
less cumbersome. There has been a growing interest in the
bare-hand-based gesture control system. Different methods
have been developed to build the interactive systems. The
essential techniques are varying in these works. But the
processing steps are similar, which consist of hand detection
and pose estimation. Therefore, we organize them into two
main categories: hand tracking and hand pose estimation, and
mainly concern about the methods that use RGB-D sensors.

A. Hand Localization and Tracking

Segmenting a hand from a cluttered background and track-
ing it steadily and robustly are challenging tasks. The skin
color [16] and background subtraction [17] techniques are
the preferred methods for detecting the image regions con-
taining hands. These types of methods, however, make a
number of assumptions, e.g., hand is the only active object in
the camera scene, otherwise complex classification methods
must be used. Low-level features-based classification meth-
ods [18], histogram [19], [20], multiscale model [21], and
motion cues [22] are employed to overcome this problem.
Guo et al. [23] presented a method, which combines the
pixel-based hierarchical feature for AdaBoosting, skin color
detection and codebook foreground detection model to track
the dynamic or static hand under changing backgrounds.

To improve the robustness and reduce the computation time,
current methods combine the ability of a depth camera with
RGB information to extract hand regions from multiple candi-
date regions based on volume bounding box [24], scale [19],
pixel probability [25], feature probability [10] and the distance
to the camera. Paul et al. [26] have given a comparison on
depth image-based hand extraction and RGB image-based
hand extraction.

In some relatively early research works, depth
data are usually used independently to locate hands.
David and Zahoor [27] detected local peaks from low
resolution depth images, which are used as potential hand
centers and a palm radius is used to segment the hand from
wrist and arm. Paul et al. [28] used a minimum enclosing
ellipsoid to extract the major arm axis. In the perpendicular
direction, the local minimum of blob width can be used to
segment the hand region from an arm. Depth-based methods
are fast. However, the segmentation accuracy is dependent
on the method of body pose estimation. Therefore, skin color
map is computed to determine which regions of the depth
image should be selected [29]. Han et al. [30] also gave a
detailed description of this topic.

B. Hand Pose Estimation

In hand pose estimation, there are a number of methods
developed to find a relationship between 2-D hand shape and
hand posture [31]. The hand posture is commonly defined
by an articulated model along with joint angles and the
orientation of the palm. These parameters can be assigned
different values based on the hand shape extracted from image,
and therefore, a large number of postures can be generated.
Some of them have predefined semantics, which can serve
as gestures and can be further used in human–computer
interfaces.

Model-based methods have also been popular because they
can easily incorporate constrains on hand shapes. However,
they need complex trackers that are computationally expen-
sive. Due to the fast movement of human hand, image database
indexing technique [22] is employed, which makes it possible
to recover hand tracking from each frame. Wang et al. [14]
provided a real-time hand pose estimation system based on
this technique.
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Fig. 1. Framework of our hand gesture recognition system.

To remove the ambiguity generated in the 2-D projection
of hand shapes, depth sensors are used. Mo et al. [32] used
3-D contours to identify fingers based on a low-resolution
depth image. Suryanarayan et al. [33] constructed a volume
descriptor in depth space and used it to recognize six ges-
tures. Ren et al. [34] used a finger shape-based distance to
distinguish different hand gestures.

To reconstruct a full degree of freedom hand model, the
different parts of a hand must be prelabeled and recognized.
One of the major approaches for dealing with depth image-
based body part recognition is to convert the pose estimation
task into a per-pixel classification problem [8]. A simple pixel
feature can be used to decrease the computational complexity.
This technique can be directly used on hand parts recognition
if enough labeled training data are provided. Keskin et al. [35]
divided the hand into 21 different parts and used this method
to train a per-pixel classifier for segmenting each part. Then, a
mean shift algorithm is used to estimate the position of joints.
Liang et al. [36] presented a novel framework, which exploits
both spatial features and the temporal constraints to recover a
hand model with 27 degrees of freedom from RGB-D video
sequences. So far, only small-scale experimental results on
hand pose estimation based on such methods are reported.
Different properties of hand poses, such as big deformation
and fast motion, make it difficult to identify the different parts
of a hand from simple pixel features.

III. FRAMEWORK OVERVIEW

As shown in Fig. 1, our framework consists of three stages:
hand parts classification, hand gesture recognition, and appli-
cation definition. Each stage contains two different workflows.
The upper workflow is used for acquiring training data and to
define gesture templates; the lower is employed to recognize
hand gestures in real-time applications. We decide to use a
Kinect camera instead of a dedicated camera as the input
sensor for two reasons: 1) the Kinect sensor can provide both
RGB and depth information and 2) the accuracy of Kinect is
very close to a laser-based devices within a short range [37].
This makes Kinect a good choice for building gesture driven
desktop applications, especially for augmented reality (AR)
applications. In addition, Kinect makes it easier to create a
labeled training data set using a semiautomatic technique that

combines the depth and RGB information. Once real hand
gestures are captured and labeled in the first stage, we can
generate the corresponding contour descriptors in the second
stage and provide semantics for them in the third stage. These
definitions can then be used in the real applications.

A. Hand Parts Classification

In hand parts classification stage, we apply the per-pixel
technique based on the work by Shotton et al. [8]. To improve
the framework’s usability in building real HCI applications, we
develop a new semiautomatic method for labeling depth pixels
containing hand into different classes. A glove with multiple
colors is employed to assist the labeling process. The labeling
results are fairly noisy and require some manual processing.
The output of this procedure is a labeled training data set.
The training set is fed into a classifier based on random
decision forest [8]. For real applications, we use a two-step
segmentation process: the first step is to segment the hand from
the background, which is a binary classification problem; the
second is to segment the hand into individual parts based on
the per-pixel classifier. Once hands are extracted from a depth
image, they are fed into the classifier that roughly partitions
them into different parts.

B. Gesture Recognition

In the second stage, we use an improved 3-D contour
model based on the model proposed in [10]. The basic idea
is that prior knowledge of hand structure can be used to
improve the accuracy of classification results. Thus, a contour
model is used to recognize both static and dynamic hand
gestures.

This stage also contains two workflows. In the upper, train-
ing data are converted into contour model-based descriptors
and are incorporated into a gesture database. The gesture
templates in the database are indexed by a K-d tree structure
to speed up the gesture matching procedure. Once the detected
hand is segmented into several hand patches, we can generate
a 3-D hand contour model from it in the lower work flow.
This model contains not only gesture descriptors but also the
3-D position of the hand. In the demonstration application, we
show how they are used for recognizing dynamic gestures.
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Fig. 2. Color glove design. (a) 14 and (b) nine patches.

C. Application Definition

To simplify the process of building real applications, we
directly define application specific gestures in the gesture
database. Once a similar hand contour descriptor is matched
in the database, an event is triggered to drive the system’s
response to that gesture.

IV. TRAINING DATA GENERATION

Training data collection is always a nontrivial task. Inspired
by the current research of color-based motion tracking tech-
nique [14], we design two configurations of the color glove.
As shown in Fig. 2, the difference is that the one with nine
patches cannot identify complex finger motion, therefore, for
this paper, we adopt the one with 14 patches.

To collect the training data in a semiautomatic way, we need
to combine both RGB and depth information for labeling. The
first task is to calibrate the RGB and depth camera. There
are many techniques that can be used to calibrate the two
cameras [38]–[40]. However, in our experiments, we directly
obtain the pixels mapping between RGB and depth cameras
from the OpenNI Kinect SDK. The second task is to locate
the multicolor glove and recognize different color regions. We
manually initialize the hand location in the color image, then
use mean shift for hand tracking. After the location of the hand
is estimated, the different parts of a hand are identified. This is
a challenging task because the measured color value can shift
from frame to frame due to illumination changes [41], which
will result in very noisy signals when depth pixel labeling is
performed. In our work, the color patches are classified using
a Gaussian color model trained in the HSV color space. We
then use a predefined graph to validate all pixels, remove the
invalidated pixels, and manually finish the final labeling work.

A. Hand Localization

Depth sensors make segmentation under constrained con-
ditions simpler than ever. However, segmenting the hand
from a cluttered background is still a challenging problem,
because the shape of the hand is very flexible. In our sample
collection stage, both RGB and depth information are used
for localization of the hand. Fig. 3 shows the procedure of
recognizing the hand.

First, we ask users manually select several parts within a
hand region (top left image in Fig. 3). This selection uses
a fixed sequence, which usually includes three color-regions
from the first image of a gesture sequence. Then, a mean shift
method is used to track multiple hand parts simultaneously for
these gesture sequences. Therefore, the location and direction
of the hand can be confirmed during the tracking process.

Fig. 3. Hand location and rough labeling.

Simultaneously, the shapes of foreground targets are seg-
mented from the depth image. We make use of the relationship
between RGB and depth image to find where the hand is
located. This process generates a hand mask. Each depth
pixel in this region can be assigned a RGB color, which will
generate a coarsely labeled gesture sequence on depth pixels.

B. Color Classification

Coarsely labeled results need to be further refined. We use
a color classification approach [41]. Colors are defined as dif-
ferent 1-D Gaussian distributions N(μi , σi ) in HSV space. We
only consider hue, which is estimated from manually labeled
samples, usually the first image of each gesture sequence.
Every depth pixel of the hand is classified by the following
K -means method:

C(x) = arg min
i

‖hi − μi‖, x ∈ hand (1)

where hi is the hue value of the i th depth pixel.
The output of the color classification step is used as training

data for generating 3-D hand contours for the gesture database.
During the semiautomatic labeling process, there are many
incorrectly labeled pixels. After color classification, manually
labeling process is still employed to remove this noise. There
are 2564 labeled frames of hand samples from 20 people in
our training database. Five different types of hand gesture
sequences are included in the database. Using the classification
results, the average labeling time is decreased from 6 min to
30 s for each image in our experiments.

V. HAND PATCHES SEGMENTATION

There are two problems that need to be solved in the
hand pose estimating process: hand extraction and hand parts
classification. Without strong assumptions about the range of
activities, segmenting hands from a cluttered background is
difficult, because of the interference of other body parts, such
as arms, head, and shoulder. Segmenting a deformable and
rotatable hand into different parts is also a challenging task.
We use a two step segmentation processes in our approach.
One is the full hand extraction step, and the other is hand
parts segmentation. The former step uses a classification and
tracking procedure to distinguish hand objects from other
objects. The latter step is to segment hand into parts depending
on the feature extracted from depth image.
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Fig. 4. Hands extraction. (a) RGB and depth images. (b) Initial segmentation. (c) Targets classification. (d) Hand tracking.

A. Hand Extraction

To discriminate hand-like objects from other foreground
objects, a tracking technique is used. The complete procedure
is shown in Fig. 4. For RGB images, the skin color pixels are
extracted from RGB image by [42] to generate the skin color
mask [as shown in Fig. 4(b) upper].

For the depth image, we first assume that hands move within
a certain distance range to the camera (distance <1.6 meters).
Outside this range, part of the depth data are often missing
due to multiple reflections and scattering on the surface of
the hand. The assumption is also helpful in removing some
of the noise. Then, a dynamic threshold segmentation is used
to extract multiple targets from the depth data [as shown in
Fig. 4(a) bottom left]. Both depth and RGB images are used to
get the initial segmentation. The candidate targets containing
enough skin colored pixels are kept as potential hand locations.
In experiments, this percentage is set to a constant value. We
found that areas containing 70% skin colored pixels perform
well during classification. A simple 2-D shape feature is used
to classify targets into hands and other objects. After this
process, the selected targets are fed into a Kalman filter-
based tracker to avoid any jitter, noise, occlusions and large
deformations of the hand in the input video. We use a standard
Kalman filter described in [16] to track the trajectory of the
palm center in 2-D space. The segmentation and classification
procedure are done for each frame. Even if the hand is lost
in a certain frame due to noise or temporary occlusion, it will
be recovered in the successive frames.

We use a 2-D silhouette feature for determining if an object
is a hand or not. This feature uses local curvature on the
contour to describe the geometry of the fingertips. For each
pixel on a contour, the feature is calculated by

acos
((

x A
i−1 − x A,H

i

)
·
(

x A
i+1 − x A,H

i

))
< T (2)

where x A represents the coordinate of a depth pixel on a target
contour A. A is an approximated curve computed from the
original hand contour extracted from a depth image. x A,H

i
is the coordinate of a depth pixel on A’s convex hull H .
T is an empirical threshold. As shown in Fig. 5(a), the red
points indicate where the features are located. We found that
T = 0.8 performs well in practice. It is not very robust because
the shape feature cannot always be detected from the contour
in some frames. To segment the hand from other extracted

Fig. 5. Features. (a) 2-D shape features defined on hand contour. The red
points indicate the locations of features. (b) Position feature in a rotated hand.

targets, we learn the prior probability of the number of features
from a group of training depth images.

Bayes rule is used to compute the posterior probability
of an object being a hand. The posterior is represented by
P(h = 1|S), which represents the likelihood of observing a
hand object when shape features S are given, we have

P(h = 1|S) = P(S|h = 1)P(h = 1)

P(S)
(3)

where P(h) is the prior probability that measures whether the
target is a hand (h = 1) or not (h = 0) without observing
its color. We can estimate the probability density function of
P(S|h = 1) and P(S|h = 0) from the training database.
Here, P(S) = P(S|h = 1)P(h = 1) + P(S|h = 0)P(h = 0).
Candidate regions are chosen if their posterior probability is
greater than a threshold.

B. Hand Parts Classification

Depending on a weak spatial prediction, the position fea-
ture defined in the depth image [8] is simple and effective.
However, it is not rotation invariant. The property of rotation
invariance is important for hand pose estimation, especially
in the case the support of the body pose estimation is
missing.

To overcome this problem, we create a new feature, which
is defined over the 3-D surface constructed by the depth pixels.
The distribution of depth values in a neighborhood of a pixel
is considered to identify which part of the hand that pixel
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Fig. 6. Position feature is a geometrical feature defined on the depth image
(left), which represents local details. The red arrow’s direction approximates
the normal; the size approximates the mean curvature (middle). In the
2-D depth image, this feature can be computed by a neighborhood sampling
descriptor (right).

belongs to. As shown in Fig. 6(left), the relationship of depth
pixels in a neighbor domain can be represented as a graph
G = (X, E), with pixels X and topology E . Where X =
[x1, x2, . . . , xn], xi = {xiu, yiv , dI (xi )} is the depth pixels set.
dI (xi ) is the depth value of pixel xi . Inspired by [43], we
define the position feature for each pixel xi by

fi (I, x) =
∑

i, j∈E

ωi, j
(
x j − xi

)
(4)

where
∑

i, j∈E ωi, j = 1.
A graphical description of this position feature is shown

by Fig. 6 (middle). The neighbor domain information is
introduced by the topology. In (4), the direction of fi (I, x)
approximates the pixel’s normal, and the size of fi (I, x)
represents the mean curvature. We only use the size, thus
the position feature is rotation invariant. To improve the
computational efficiency, we use the pixel’s normal and the
mean curvature to compute the feature. In the algorithm,
the key parameter is the feature scale parameter ri, j , which
represents the distance between xi and x j (Fig. 6 right). Using
a constant ri, j , we can define the position feature on the depth
image as

δi = L (xi ) = dI (xi ) − 1

n

∑
j∈E

sI (x j ) (5)

where sI (x) is the depth value of pixel x , n is a predefined
number of sampling points, and

sI (x) =
{

dI (x), x ∈ hand

b, x /∈ hand.
(6)

Fig. 5(b) shows examples of the position features are com-
puted on a series of rotated hands. For illustration purposes,
feature values are mapped into the RGB color space. As can
be observed in Fig. 5(b), there is no clear boundary between
the palm center and hand edge. This means that the signal is
weak. To overcome this problem, we use a random decision
forest to combine these features in all training data. Since the
contour of each hand is already detected, the position feature
does not depend on a specific background.

We use the 2-D shape feature and the position feature to
segment hand patches. The geometry feature that was used
in the original framework [10] is removed, because its con-
tribution for improving the accuracy is insignificant. Fig. 7(b)
shows the result of classifying different parts of a hand using
features of different scale extracted from 1906 frames of test
data. To improve the accuracy of classification and reduce

Fig. 7. (a) Prior distribution of shape features. (b) Feature scale and average
per-classes accuracy.

the false positive rate, we refine the estimation results with
a contour model in the gesture recognition stage.

VI. GESTURE RECOGNITION

For many applications, the goal of hand gesture recognition
is not to recognize arbitrary 3-D hand pose, but to recognize if
a gesture is one of a fixed number of hand poses. Therefore, in
this paper, we use a database indexing technique to implement
gesture recognition. A hand contour database is collected using
the training samples. In the following sections, we give the
description of the contour model and the similarity measures.

A. Contour Model

The final output of the estimation process is a labeled
3-D contour. There are several advantages of using labeled 3-D
contours as hand models. First, a contour is a simple structure.
It is easier to match two contours with different scales than
matching image patches or articulated models. Second, the
representation of a contour only needs a small size descriptor,
so it is more appropriate for database indexing-based gesture
recognition techniques, in which a large number of samples
are collected for gesture matching. Third, it is convenient to
convert contours to other models, such as articulated model
and 3-D skin model.

1) Contour Descriptor: The hand contour model C is
represented by a ordered list of points on the contour
c = {vc

1, vc
2, . . . , vc

n} with its corresponding label vector
l = {l1, l2, . . . , ln}. Where v is a vertex on contour c. The
value of n is determined by the distance of the hand to
the camera and describes the size of a hand contour and is
decided by the distance of the hand to the camera. Label vector
provides the information about specific hand contour segments
belonging to certain hand parts. As a descriptor, both 3-D
coordinate sequence and labeling index sequence cannot pro-
vide a rotation and scale invariance. We add another sequence,
m = {m1, m2, . . . , mn}, for the contour representation. m is a
normalized length sequence

mi = Length({vc
j |l j })

Length(c)
(7)

where j represents the continuous indexing. The descrip-
tor of the i th hand contour Ci is represented by the



YAO AND FU: CONTOUR MODEL-BASED HAND-GESTURE RECOGNITION USING THE KINECT SENSOR 1941

Fig. 8. Contour descriptor alignment.

{li
1mi

1, li
2mi

2, . . . , li
dmi

d }, where d is the dimension of the
descriptor. By selecting d most significant mi , d can be set to
a fixed dimension.

B. Contour Generation

Given a 3-D contour c, a natural method for constructing l is
to directly search the set of labeled points and, for each point
vi , find the class with the maximum probability. We define the
probability as

P(c|vc
i ) = 1

n
γi

∑
j∈N(i)

Pj (c|v j ) (8)

where N(i) represents a vertex set in the neighbor area of
vc

i . Pj (c|v j ) can be deduced from P(c|x). γi is a learning
parameter defined as

γi = pi
c

M

∑
k∈ς

P(c|vc
k) (9)

which considers the continuity of the 3-D contour. Here, ς is
a contour segment that consists of some subset of indices of
vi and its neighbor domain. M represents the size of ς . pi

c is
a learning parameter, which defines a connectivity relationship
between different contour segments. Using this model, the
gesture recognition process can be described as a sequence
matching problem, which can also be used to recover the 3-D
hand position.

C. Contour Matching

To measure the similarity of two contours, our task is to
find a distance function D(·) for fast matching. Once D(·) is
determined, the descriptor can be aligned according to Fig. 8.
That means given a contour descriptor Ci , the query result
from a database should satisfy

Ci = arg min
i∈�, j∈�

D(Ci , C j )w (10)

where � is the test set of contours, � represents the template
database. w is a weight, which is computed by

w =
∑

k={1,...,d}
li
k xor l j

k . (11)

There are two possible cases where errors arise in generating
of hand contours: whole-to-whole matching and whole-to-part
matching. We use Smith–Waterman [44] algorithm to deal
with both cases. In our application, we select the arm class
as the start of the descriptor, because in the data, the arms
are typically longer than any other hand parts and are always
visible.

VII. VALIDATION

We evaluated our method on the data set collected in
Section IV. A total of 2564 frames was captured, each of which
includes calibrated depth data, labeled hand parts information
and a mask image of the hand region. All these data are
compressed and stored in a SQLite database. In the hand
gesture recognition test, we compared our method on a second
RGB-D data set provided in [34].

A. Hand Detection

In most of the indoor bare–hand interaction applications,
hands and objects often appear together. Therefore, we assume
P(h = 1) = P(h = 0) = 0.5. Thus (3) can be simplified to

P(h = 1|S) = P(S|h = 1)

P(S|h = 1) + P(S|h = 0))
. (12)

The distribution of P(S|h = 1) is learned from 814 frames
that are randomly chosen from the training database, while
other objects of size similar to the hand, such as head, bottles,
apples, keyboards, computer mice, and books in the database,
are used to estimate P(S|h = 0). These two distributions
are shown in Fig. 7(a), where the blue bars and red bars
represent the statistic results on hand and other objects, respec-
tively. With depth information, shape features can be extracted
quickly employing a predefined threshold. The number of
shape features is counted and used to compute (3). This
method is tested on the remaining 1750 images containing a
cluttered background. The hand detection procedure achieves
56.8% accuracy. After using the skin color segmentation
described in Section V, the accuracy increases to 95.43%.

The classification results are heavily dependent on the
environment. In our application, the frame loss rate is less
than 1% during the tracking procedure. Multiple hands can
be processed simultaneously with small amount of additional
calculation. The disadvantage is that it will not work in the
following scenarios: 1) the scene contains the body; 2) one
hand is occluded by another hand; and 3) a person is wearing
gloves. Body skeletal trackers can be used to solve these
problems.

B. Hand Parts Classification

In hand parts classification experiment, we select 434 frames
from two subjects for training, and the frames from the
other 18 subjects for testing. The training samples and testing
samples are all collected from the same laboratory envi-
ronment, but with different backgrounds and camera view
angles.

Fig. 7(b) shows the relationship between the position feature
scale and per-part recognition accuracy rate. The mean per-
class accuracy is used as a baseline. Instead of using a single
shape feature, we use the pixel’s normal and the pixel’s
mean curvature defined in Section V as the position feature.
Compared with the per-part recognition accuracy rate in [10],
the classification results show a significant improvement.
This curve will change slightly when different topologies are
selected for shape feature.
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TABLE I

PER-PIXEL HAND PARTS CLASSIFICATION RESULTS

Fig. 9. Per-pixel and per-segment classification accuracies with contour
model.

Table I shows the per-pixel classification results of
detecting different hand patches. The experiment is done on
1906 frames, where T indicates finger tip part, CMC indicates
the region near the root of little finger, and TM indicates
the region near the root of thumb. The average accuracy is
improved to 51.87%. However, the misclassification rate is
still high. Shotton et al. [8] showed that using more training
samples will improve the mean per-class accuracy. However,
labeling real data and generating synthetic training data are
nontrivial. Combining more features into the position feature
will also improve the mean per-class accuracy [10] but too
many features might result in the overfitting problem.

Fig. 9 shows the per-class accuracy for pixels located on
the hand contour (Fig. 9 black) and the per-class accuracy
by using the contour model (Fig. 9 red). Compared with
the results provided by the pixel classification, there is a
large improvement in contour model-based classification. The
average accuracy of hand parts classification is improved from
52.31% to 74.65%. The error rate is still large but hand
orientation can be estimated from the contour, which can also
be used in gesture matching.

C. Gestures Recognition

Our method is tested on the database provided in [34]
without changing any parameters and features. Because these

Fig. 10. Confusion matrix of gestures recognition results. The gesture cate-
gories are ordered by the original database. (a) Near-convex decomposition +
FEMD [34]. (b) Hand contour matching.

samples do not provide the hand parts segmentation, we
capture the same gestures and manually labeled them for
each subject. Then, the entire data set of [34] is used for
testing. Fig. 10 shows the test results in confusion matrix.
Compared with the near-convex decomposition-based finger-
earth mover’s distance (FEMD) method, our method achieves
a similar accuracy using 40 training samples. Although the
recognition rate of some categories has not been significantly
improved, the average true positive rate is better.

We use a desktop computer with an AMD Phenom II X4,
3.0-GHz CPU with 3-G RAM to run the test. For each
frame, the computation time includes approximately 10 ms for
target segmentation, 22 ms for tracking, 17 ms for sampling
and features computation, 3 ms for classification, and 35 ms
for contour matching. We use a small gesture database that
includes 320 hand contour descriptors to test the matching
of hand contours. Our C++ implementation processes each
frame in 87 ms. GPU acceleration is not used.

VIII. SYSTEM APPLICATION

To evaluate the feasibility and effectiveness of the proposed
framework, we perform case studies with a HCI program
named AR Chemical [45], which is an application that uses
a tangible user interface for organic chemistry education.
The interface uses an AR mouse and AR makers to allow
users to compose and directly interact with 3-D molecular
models. All the interactions are done on a real desk. The
operation includes moving, dragging, positioning and assem-
bling virtual structures in a 3-D space. Therefore, delicate and
complex interactive behaviors and hand position information
are needed.

We simulate this system and provide four hand gestures to
replace the original operation that used with the AR paddle and
computer mouse. First, we use hand grab gesture to replace the
AR paddle and then use raising thumbs to simulate the mouse
button. The finger pointing action is used for positioning
objects.

Once a gesture is detected, we need to record the starting
position of the hand, and rotate the indicator mark on the 3-D
molecule, which inserts the atom into the right position pointed
to by the finger. Finally, the waving hand with a different
orientation is used to assist this assembling process by rotating
the assembled molecule on the platform.

The dynamic gesture recognition is realized in the appli-
cation layer. We setup two gesture buffers in the application.
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Fig. 11. Waving gesture for rotation control.

Fig. 12. Sample frames from the atom grabbing and molecular assembling
operation.

One for reserving sequential contour with 3-D vertices to get
hand position; the other is for holding hand contour descriptors
to match the hand pose. We define simple interaction action
rules on the buffers. This scheme is easy to extend.

Fig. 11 shows the rotation operation. Fig. 12 is sampled
from a procedure of adding an atom into a molecule. This
combination of four hand gestures can drive the real-time
visual interaction with complex visual feedback. Such type
of interactions can increase natural feeling of the operation.
The Kinect-based system is able to overcome the problem
of illumination changing. We believe that other applications,
such as digital sculpture, painting, and computer aided design
system could benefit from this framework as well.

IX. CONCLUSION

We have introduced a novel framework for recognizing hand
gestures, which is inspired by the current depth image-based
body pose estimation technology. A semiautomatic labeling
strategy using a Kinect sensor is described. This procedure is
used to generate the samples used for both hand detection,
and hand pose estimation. The 3-D hand contour with labeled
information provides a simplified hand model to facilitate
building real-time bare-hand-controlled interface. Our frame-
work can be easily extended to incorporate different desktop
applications. We also notice that 3-D gesture interaction is not
user-friendly enough, because there are still many visual and
touch feedbacks needed to improve the realism.

This paper still has several limitations that we plan to focus
on in the future work.

1) Segmenting hand from a long arm or a body is not
well handled with the proposed hand extraction and
hand parts classification method. Therefore, the form of
camera setup is limited.

2) The accuracy of the contour model is limited by the
classification result of hand parts.

Another future research directions include designing new
hand partition patterns to improve the recognition accuracy.
The contour matching algorithm can be further revised and
evaluated to improve the matching accuracy. Moreover, we
also would like to develop new hand gesture controlled appli-
cations with the support of this framework.
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