SHAMrOCk: Sphero HAnd MOtion Control

Emil TYLEN, Timothée GERMAIN & Hector ANADON LEON
Luled tekniska universitet
Sweden

Abstract—To get better familiarised with motion control
systems, we developed such a system to control a Sphero
(robotic ball) with a LeapMotion (device that tracks hands and
fingers) through a computer.

The resulting system has no real use, but is rather flexible
and can easily be modified to control other things.

I. INTRODUCTION

As motion controls and gesture detection systems become
more well-known and used by both regular consumers and
professionals alike, the benefits of learning how to set-up,
implement and utilize such a system become ever larger.
New, relatively cheap hardware is emerging that makes this
work even easier. One example of such hardware is the
LeapMotion. The LeapMotion device is easy to integrate into
a project due to a well-defined and documented API and
drivers for all big platforms, which includes ARM support.

This project was started to gain an increased knowledge
about these devices.

To get a relatively simple introduction to how the Leap-
Motion works, and how it can be used, the Sphero robotic
ball was chosen as a sort of “companion” device to the Leap.
This is because both of the devices have a Python API, and
because the Sphero provides a very physical, direct way to
see and understand what the Leap is doing.

II. GESTURE BASED INTERACTION
A. LeapMotion

The LeapMotion is a sensor device that supports hand
and finger motions as input, analogous to a mouse, but
requiring no hand contact or touching.

Its firmware has a built-in gesture recognizer that can
detect things like grasping, gripping, rolling a finger or
pointing with a pen.

The device is really precise. It has an accuracy of
millimetres while tracking hands and fingers position. [1]

(2]

B. Sphero

The Sphero is a spherical robot toy designed by Orbotix.
It is capable of rolling around and it is controlled through
Bluetooth.

It also has some LEDs inside, so the ball can change
colours while rolling.

Nowadays, there are two versions in the market. The
later version (the V2.0), although heavier, is faster and has
higher turning speeds.

III. IMPLEMENTATION

The implementation is written in Python, using the
official Sphero driver[3].

The driver is multi-platform, but the Bluetooth stack
implementation in Linux is not complete, which means that
the program does not run correctly. Therefore, Windows is
recommended.

To move the Sphero, the official API provides the
following function:

roll (speed, heading)

where speed is a 0-255 value representing 0-max speed of
the Sphero, and heading is a value in degrees from 0 to 359
from the base heading direction. When turning, the Sphero
automatically figures out which direction is faster and uses
that.

A. Communication with the Sphero

At the beginning of the project, the communication with
the Sphero was designed to be handled synchronously, so
that messages from the device could be handled in order.
However, either the driver does not support this or the
messaging system is set up wrong. Whatever the reason, this
forced the message handling to be asynchronous.

Although Bluetooth in Windows is more reliable, the
connection sometimes gets lost and needs to be restored
manually.

Sphero V1 and Sphero V2 communicate in a different
way. The V2 has to be sent one order per frame, while the
V1 keeps the last order and executes it every frame.

B. First version: 8 directions control

In order to test the communication, the first control
system was a simple 8 direction control for the heading
of Sphero (up, down, left, right and combinations thereof)
without controlling the speed (it was always the same).

It only needed two dimensions to interact (X and Z).
The height of the hand is not used but has a minimum
value (about 15 cm above the LeapMotion) in order to have
enough space to move in side the vision cone of the device.

C. Final version: Analog control

The second and implementation uses analog control for
both speed and angle. This implementation still only uses 2

dimensions.

It requires the user to hold their hand still above the
LeapMotion and press the enter key to calibrate a zero
point. After this is done, all positional changes are reported
and turned from cartesian coordinates (X/Y) into polar
coordinates (r/). These coordinates are then packaged as a
command and sent to the Sphero.

If hand position is in the “deadzone” (a small, configurable
radius around the starting point), the ball will not move.
When the hand leaves it, it will start moving. This is mainly
for convenience, as stopping the baal would otherwise
require exact precision.

This is the way the position of the hand (xpos, zpos)
related to the base position (0,0) and the speed (length of
the vector) and angle (of the vector) are calculated.

xpos = hand.palm_position[0]—self.x
zpos = —(hand. palm_position[2]—self.z)
speed = math.sqrt(xpos**2 + zpos*x*2)
angle = (math.degrees

(math.atan (xpos / zpos))) % 360

The final implementation also utilizes the LEDs to change
the colour of the Sphero while on the move. The baal starts
out blue, but as it speeds up, it turns red.

8 directions
all or nothing
8 fixed values

analog
analog (0-255)
analog (0-360)

TABLE I
COMPARISON OF THE TWO IMPLEMENTATIONS

speed
heading

D. Setting the heading

As the Sphero is a ball, the way the little robot inside
is pointing isn’t possible to see. The heading is therefore
indicated by a blue LED on its back. This LED is used as
a refcerence point and should be calibrated to point at the
user before driving to avoid confusion.

However, when the Sphero hits something, the robot inside
jumps a bit and the heading moves. This means that after
every collision the user has to set it again.

In order to set the heading, the gesture recognition of the
LeapMotion is used. The user rolls their finger clockwise or
anticlockwise to slowly rotate the Sphero on the spot until
the rear LED is pointing at them.

In the first version, no filtering was done. This meant
that the rotaion gesture could be active at the same time as
the movement gesture, which led to some weird issues as
the ball could change heading while moving, without the
user noticing. It was solved by making it compulsory for
the Sphero to be at a complete stop when setting the heading.

IV. RESULTS

This video is a demonstration of the project showing the
functionalities of Sphero controlled through LeapMotion

https://www.youtube.com/watch?v=
PFO7df-—-THo

Here is a link to the code of the project in Python and
information how to run it.
https://github.com/shamRockOrg/SHAMrOCk

V. CONCLUSIONS

Since the aim of the project has mainly been to gain
familiarity with the technologies chosen, the conclusions are
basic.

A. The LeapMotion

The Leap has all the marks of a great product. It’s small,
easy to use and has a very simple, modular API that can be
tailored to include the functionality desired depending of the
scope of a project. Considering its relatively low price-point
and despite this very good accuracy, the Leap is a viable
replacement to traditional control methods in places where
these would be otherwise undesirable.

Examples include:

o Places where hygiene is important, such as hospitals or

food processing plants,

o Places where wear and tear is a big factor, like mines

and factories,

o People with damaged extremities or nerve damage hin-

dering fine motor control.

All in all, a very versatile system that is accurate enough
for daily use.

B. The Sphero Robotic Ball

The Sphero is a toy. Nothing more, nothing less. It has
no practical use other than to amuse. To this end, its API
is rather broken. This is especially true between versions, as
the message structure differs slightly between the old and
the new ball. Nowhere is this documented.

Developing for the Sphero quickly leads to frustration,
especially considering that there is no actual reason for using
it. In the defence of Orbotix, they do not advertise the Sphero
(or, for that matter, its successor, the Ollie) as anything other
than a toy.

The Sphero has fit the needs of this project, acting only
as an “avatar” of sorts to illustrate the actions of the
LeapMotion. However, it has few other uses.

C. Future work

The LeapMotion has lots of fascinating uses, as doc-
umented above. Connecting it up with some other, more
practical systems would a priority for any potential future
work. To do this, a standardized control scheme should be
developed. The Leap already has a databank of gestures that
can be used to achieve this goal. After some sort of general
method of control has been established, the Leap can be
plugged into a multitude of systems and be ready to go as a
replacement for, say, a keyboard or touch screen.

ACKNOWLEDGMENTS

The authors would like to thank Kére Synnes for his
support.

https://www.youtube.com/watch?v=PFO7df--THo
https://www.youtube.com/watch?v=PFO7df--THo
https://github.com/shamRockOrg/SHAMrOCk

[1]
[2]

[3]

REFERENCES

Leap Motion — Mac & PC Motion Controller for Games, Design, &
More. 2014. Available at: http://www.leapmotion.com.
Weichert, F., Bachmann, D., Rudak, B., Fisseler, D., Analysis of the
accuracy and robustness of the leap motion controller, Sensors, 13(5)
(2013) 63806393.

Python driver for the sphero from the Robot Operating System
(ROS) project Available at: |attps://github.con/mmwise/sphero_ros/blob/

groovy-devel/sphero_driver/src/sphero_driver/sphero_driver.pyl

http://www.leapmotion.com
https://github.com/mmwise/sphero_ros/blob/groovy-devel/sphero_driver/src/sphero_driver/sphero_driver.py
https://github.com/mmwise/sphero_ros/blob/groovy-devel/sphero_driver/src/sphero_driver/sphero_driver.py

	INTRODUCTION
	Gesture based interaction
	LeapMotion
	Sphero

	Implementation
	Communication with the Sphero
	First version: 8 directions control
	Final version: Analog control
	Setting the heading

	Results
	CONCLUSIONS
	The LeapMotion
	The Sphero Robotic Ball
	Future work

	References

