
2474 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

Manuscript received 15 Mar. 2017; accepted 24 July 2017.
Date of publication 7 Aug. 2017; date of current version 29 Sept. 2017.
Recommended for acceptance by W. Broll, H. Regenbrecht, and J.E. Swan II.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2734426

1077-2626 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Natural Environment Illumination: Coherent Interactive Augmented

Reality for Mobile and non-Mobile Devices

Kai Rohmer, Johannes Jendersie, and Thorsten Grosch

Fig. 1. Rendering results of our entire pipeline. A toy car with small metal applications rendered using different quality settings: low
(top left), high (left), medium (top center) and (bottom center) (model courtesy of VILAC). A motor bike (right) with mirroring chrome
elements (model courtesy of Maciek Ptaszynski).

Abstract—Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for
illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In
this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile
device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high
dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced.
Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods
are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality
and can produce quality renderings on desktop hardware.

Index Terms—Augmented Reality, Mixed Reality, Differential Rendering, Color Compensation, Impostors Tracing, GPU-Importance
Sampling, Mobile AR, Scene Reconstruction, Light Estimation, Material Estimation, Depth-Sensing, Point Clouds, Global Illumination

1 INTRODUCTION

For many years, visual coherence in Augmented Reality (AR) is one of
the research topics in focus of the computer graphics community. With
the farther goal of photorealistic augmentation, various methods have
been developed to insert virtual objects into a view of the real world so
that they blend in seamlessly. Most of them require a complex hardware
setup [38] or computation times that do not allow for interactivity. Our
goal is to achieve plausible and compelling results with a mobile device
and no other hardware at interactive frame rates.

To achieve coherent augmentations, there are three major topics we
need to deal with: geometric registration, photometric registration and
camera simulation [41]. Geometric registration of the virtual content
and the real world is the foundation of coherent AR applications. It
involves the pose estimation of the camera in the real world and the
projection parameters of the camera – denoted as extrinsic and intrinsic
parameters. We assume that this information is provided for each point
in time and that they are synchronized with the virtual camera used for

• Kai Rohmer is part of the Graphical Data Processing and Multimedia

Group at the TU Clausthal, Germany.

E-mail: kai.rohmer@tu-clausthal.de.

• Johannes Jendersie is part of the Graphical Data Processing and

Multimedia Group at the TU Clausthal, Germany.

E-mail: johannes.jendersie@tu-clausthal.de.

• Thorsten Grosch is head of the Graphical Data Processing and Multimedia

Group at the TU Clausthal, Germany.

E-mail: thorsten.grosch@tu-clausthal.de.

rendering virtual objects. This automatically provides us with several
important visual cues, e.g.: relative size of objects and perspective, so
we can focus on occlusions, shadows and shading to achieve a seamless
blend of virtual and real objects. For more details and an introduction to
tracking and registration, see the book of Schmalstieg and Höllerer [41].

The focus of our work are the other aspects: photometric registration
and camera simulation. The first one describes the interaction of light
between the real world and the augmentations. It involves the acquisi-
tion of the real environment including geometry, materials and light –
ideally, the plenoptic function introduced by Adelson and Bergen [1].
Based on the captured data, light simulation approaches can be used to
compute the appearance of the virtual objects in the real environment
and their virtual influence back on the real scene.

Camera simulation takes the physical behavior of the camera into
account. Unlike professional DSLR cameras for which exposure, shut-
ter speed, sensitivity, white balance and other options can be specified,
simple mobile cameras lack of these options and often provide only
an exposure compensation factor and the ability to select one of a
few predefined white balance settings. Mobile sensors and their APIs
are designed to allow fast and nice-looking snapshots but provide no
basis for measuring radiance. Even their image processing pipeline
and parameters are unknown, such that generating low dynamic range
(LDR) images that could be merged into high dynamic range (HDR) is
cumbersome. To overcome this limitation, we present an approach to
estimate these unknown adjustments with respect to a reference image.
This estimation is successively applied to new LDR images to transform
them into the reference space for further processing. In the context of
AR, we use the approach to create a reconstruction of the environment,
superimpose live camera images by virtual objects plus one of multiple
differential rendering methods, and eventually transform the composed
image back into the original color space of the input image.

The contributions of this paper are:

• An estimation of the unknown image optimizations performed by
mobile camera sensors.

• Usage of this estimation to acquire the HDR radiance of an entire
scene consistently with respect to a reference frame.

• A GPU-optimized surface normal estimation by local least squa-
res plane fitting.

• Introduction of Impostor Tracing [42] for photorealistic AR ren-
dering, combined with GPU Importance Sampling [2].

• Usage of a new sampling strategy tailored for AR.

• Using the inverse operation of the estimated camera optimizations
to reduce notable differences between virtual and real objects in
terms of perceived color and brightness.

2 RELATED WORK

AR with correct illumination goes back to the differential rendering
introduced by Fournier et al. [9] and Debevec [6]. The idea is to
first reconstruct 3D geometry, camera parameters, materials and light
sources. Then, two global illumination simulations are computed,
one which contains virtual objects (LSOb j) and one which does not
(LSEnv). The (masked) difference between both, ∆LS = LSOb j −LSEnv,
contains shadows and indirect illumination, i.e., the impact of virtual
objects on the scene. Adding the virtual objects and ∆LS to the original
photograph yields the augmented image. This is also the basis for the
rendering in our pipeline.

Interactive AR with Consistent Illumination. Several solutions were
presented which compute this difference in radiance at interactive to
real-time speed, based on Instant Radiosity [27], Light Propagation
Volumes [10], Irradiance Volumes [12, 14, 15], Irradiance Caching [23],
Path Tracing [24] and Spherical Harmonics (SH) [34]. An overview
of the recent techniques is given by Kronander et al. [29]. Rohmer
et al. [37–39] introduced a hybrid approach that allows to display the
differential rendering on a mobile device using a distributed solution
with tablet PCs and a stationary PC. They require an external tracking
system and HDR video cameras.

Photorealistic AR with a Consumer 3D Scanner. Due to the availabi-
lity of consumer 3D scanning hardware, some solutions were presented
which do no longer require a manual reconstruction of the 3D geome-
try. Lensing et al. [30] show photorealistic augmentations based on
the depth values of a Kinect camera. Franke [11] introduced Delta
Voxel Cone Tracing, based on a reconstructed 3D voxel model and
Voxel Cone Tracing [3]. Gruber et al. [17] showed an image-space
approach which directly works on pixel colors and the depth image for
near-field illumination. Earlier, Gruber et al. [16] estimated a distant
monochromatic EM in SH basis from observations of many surface
points on arbitrary geometry. Differential rendering based on PRT and
ray-casting for occlusion detection is applied to augment the scene.
In accordance to us, the authors assume a Lambertian reflectance for
real surfaces, but they also assume distant light, while we are able to
compute colored near-field illumination. Zhang et al. [45] presented a
differential rendering approach for several Mixed Reality operations
that runs only on a tablet PC. This approach requires a semi-automatic
mesh reconstruction from the recorded point data and a non-linear
optimization (15-30 min). We consider the extension of our approach
to use such a global exposure compensation as part of future research.

Reconstructing 3D Geometry. There are different ways to create a
3D model using a moving depth camera. Kinect Fusion [20] uses a
volumetric data structure and a signed distance function to reconstruct
a 3D mesh. Alternatively, a 3D voxel model can be constructed using a
Hashing approach [33]. Several extensions exist for these methods [5,
43, 44]. Our method does not build a new geometry representation but
instead works on the 3D point cloud with HDR color values, acquired

by looking around with the tablet camera, without any limitations on
the scene extent.

Color Compensation. For most mobile devices, exposure time and
white balance of the camera change automatically without manual con-
trol. Therefore, a color compensation must be included when recording
the real radiance values by moving the mobile camera. Possible so-
lutions for this problem are the exposure and vignetting calibration
for stitching panoramic images [13] and the radiometric calibration
for videos [18, 26]. For stitching an HDR environment map, Kán [22]
showed that this be can recorded with a mobile device if the exposure
time of the camera is known. lIKE Kán, Meilland et al. [32] assume
that all camera parameters can be fixed. Allowing shutter speed to be
adjusted automatically results in a single degree of freedom that can
easily be estimated or found in the meta-data of the images. In this
paper, we present an approach that deals with devices that allow no
control of the acquisition parameters and offer no meta-data per image.
The video preview mode that is used for AR applications is subject to
these restrictions [22].

To address this issue, Knecht et al. [28] adaptively map the colors of
virtual objects to the colors present in the current camera image. The
general idea is to create a mapping between the camera image and the
partial solution LSEnv of the differential rendering. Applying the map
to virtual objects yields coherent colors. However, to compute LSEnv,
a scene reconstruction containing material properties is required. Our
goal is to find a mapping that allows to create such a reconstruction.

Recently, exposure correction methods were used for the correction
of recorded color values of a Kinect camera [36] and for the color
values of a tablet camera [45]. While these solutions search for a global
optimum of a given set of images, our method works progressively for
each new camera image on the tablet PC.

Capturing Illumination. Several tools exist for quickly capturing the
real illumination, like light probes [6] or fish eye cameras [38]. As an
alternative, inverse rendering techniques can be used to reconstruct the
incoming illumination from the visible radiance values in the camera
image [35,36]. Meilland et al. presented an approach to create an image-
based representation of the scene that is then used for AR rendering
[32]. While mainly focusing on the pose estimation for proper spatial
registration between key frames, the registration of the image intensities
relies on the relative change in shutter speed. This works well if all
other camera settings can be fixed. If not, the compensation presented in
this paper can help as it deals with a general linear color transformation.
Storing radiance directly in the point cloud is easier but requires a
good pose estimation. For rendering, Meilland et al. create virtual light
probes and extract a few discrete light sources for shadow computations.
We also render virtual light probes (EM/DIT), but we consider all
directions for light computations and shadows respectively. Eventually,
theirs and our approach are following the same goal of capturing the
environment scene including geometry and radiance. At the point where
the virtual light probes are created, both approaches can be exchanged.

3 OVERVIEW

We are using the Google Tango Development Kit1 which provides an
LDR image, a 3D pose estimation of the camera, and a sparse depth
image as well as timestamps for each of them. Based on this input the
following steps are performed:

Color Compensation Estimation. To cope with unknown color com-
pensation applied by mobile camera drivers, we estimate this compen-
sation with respect to the already captured scene (see Sec. 4). The
previous captured parts are rendered from the new camera position and
the resulting reference image is compared to the current input image.
Pixels that probably show the same real-world geometry are selected
and used in a system of equations to estimate the transformation that
maps the color of the input pixels to the color of the reference pixels.
This transformation is applied to all pixels of the most recent LDR
input image which yields a corrected input image for further processing
and for augmentations later.

1Google. Project Tango Developer Website. 2017

ROHMER ET AL.: NATURAL ENVIRONMENT ILLUMINATION: COHERENT INTERACTIVE AUGMENTED REALITY FOR MOBILE . . . 2475

Natural Environment Illumination: Coherent Interactive Augmented

Reality for Mobile and non-Mobile Devices

Kai Rohmer, Johannes Jendersie, and Thorsten Grosch

Fig. 1. Rendering results of our entire pipeline. A toy car with small metal applications rendered using different quality settings: low
(top left), high (left), medium (top center) and (bottom center) (model courtesy of VILAC). A motor bike (right) with mirroring chrome
elements (model courtesy of Maciek Ptaszynski).

Abstract—Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for
illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In
this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile
device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high
dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced.
Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods
are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality
and can produce quality renderings on desktop hardware.

Index Terms—Augmented Reality, Mixed Reality, Differential Rendering, Color Compensation, Impostors Tracing, GPU-Importance
Sampling, Mobile AR, Scene Reconstruction, Light Estimation, Material Estimation, Depth-Sensing, Point Clouds, Global Illumination

1 INTRODUCTION

For many years, visual coherence in Augmented Reality (AR) is one of
the research topics in focus of the computer graphics community. With
the farther goal of photorealistic augmentation, various methods have
been developed to insert virtual objects into a view of the real world so
that they blend in seamlessly. Most of them require a complex hardware
setup [38] or computation times that do not allow for interactivity. Our
goal is to achieve plausible and compelling results with a mobile device
and no other hardware at interactive frame rates.

To achieve coherent augmentations, there are three major topics we
need to deal with: geometric registration, photometric registration and
camera simulation [41]. Geometric registration of the virtual content
and the real world is the foundation of coherent AR applications. It
involves the pose estimation of the camera in the real world and the
projection parameters of the camera – denoted as extrinsic and intrinsic
parameters. We assume that this information is provided for each point
in time and that they are synchronized with the virtual camera used for

• Kai Rohmer is part of the Graphical Data Processing and Multimedia

Group at the TU Clausthal, Germany.

E-mail: kai.rohmer@tu-clausthal.de.

• Johannes Jendersie is part of the Graphical Data Processing and

Multimedia Group at the TU Clausthal, Germany.

E-mail: johannes.jendersie@tu-clausthal.de.

• Thorsten Grosch is head of the Graphical Data Processing and Multimedia

Group at the TU Clausthal, Germany.

E-mail: thorsten.grosch@tu-clausthal.de.

rendering virtual objects. This automatically provides us with several
important visual cues, e.g.: relative size of objects and perspective, so
we can focus on occlusions, shadows and shading to achieve a seamless
blend of virtual and real objects. For more details and an introduction to
tracking and registration, see the book of Schmalstieg and Höllerer [41].

The focus of our work are the other aspects: photometric registration
and camera simulation. The first one describes the interaction of light
between the real world and the augmentations. It involves the acquisi-
tion of the real environment including geometry, materials and light –
ideally, the plenoptic function introduced by Adelson and Bergen [1].
Based on the captured data, light simulation approaches can be used to
compute the appearance of the virtual objects in the real environment
and their virtual influence back on the real scene.

Camera simulation takes the physical behavior of the camera into
account. Unlike professional DSLR cameras for which exposure, shut-
ter speed, sensitivity, white balance and other options can be specified,
simple mobile cameras lack of these options and often provide only
an exposure compensation factor and the ability to select one of a
few predefined white balance settings. Mobile sensors and their APIs
are designed to allow fast and nice-looking snapshots but provide no
basis for measuring radiance. Even their image processing pipeline
and parameters are unknown, such that generating low dynamic range
(LDR) images that could be merged into high dynamic range (HDR) is
cumbersome. To overcome this limitation, we present an approach to
estimate these unknown adjustments with respect to a reference image.
This estimation is successively applied to new LDR images to transform
them into the reference space for further processing. In the context of
AR, we use the approach to create a reconstruction of the environment,
superimpose live camera images by virtual objects plus one of multiple
differential rendering methods, and eventually transform the composed
image back into the original color space of the input image.

The contributions of this paper are:

• An estimation of the unknown image optimizations performed by
mobile camera sensors.

• Usage of this estimation to acquire the HDR radiance of an entire
scene consistently with respect to a reference frame.

• A GPU-optimized surface normal estimation by local least squa-
res plane fitting.

• Introduction of Impostor Tracing [42] for photorealistic AR ren-
dering, combined with GPU Importance Sampling [2].

• Usage of a new sampling strategy tailored for AR.

• Using the inverse operation of the estimated camera optimizations
to reduce notable differences between virtual and real objects in
terms of perceived color and brightness.

2 RELATED WORK

AR with correct illumination goes back to the differential rendering
introduced by Fournier et al. [9] and Debevec [6]. The idea is to
first reconstruct 3D geometry, camera parameters, materials and light
sources. Then, two global illumination simulations are computed,
one which contains virtual objects (LSOb j) and one which does not
(LSEnv). The (masked) difference between both, ∆LS = LSOb j −LSEnv,
contains shadows and indirect illumination, i.e., the impact of virtual
objects on the scene. Adding the virtual objects and ∆LS to the original
photograph yields the augmented image. This is also the basis for the
rendering in our pipeline.

Interactive AR with Consistent Illumination. Several solutions were
presented which compute this difference in radiance at interactive to
real-time speed, based on Instant Radiosity [27], Light Propagation
Volumes [10], Irradiance Volumes [12, 14, 15], Irradiance Caching [23],
Path Tracing [24] and Spherical Harmonics (SH) [34]. An overview
of the recent techniques is given by Kronander et al. [29]. Rohmer
et al. [37–39] introduced a hybrid approach that allows to display the
differential rendering on a mobile device using a distributed solution
with tablet PCs and a stationary PC. They require an external tracking
system and HDR video cameras.

Photorealistic AR with a Consumer 3D Scanner. Due to the availabi-
lity of consumer 3D scanning hardware, some solutions were presented
which do no longer require a manual reconstruction of the 3D geome-
try. Lensing et al. [30] show photorealistic augmentations based on
the depth values of a Kinect camera. Franke [11] introduced Delta
Voxel Cone Tracing, based on a reconstructed 3D voxel model and
Voxel Cone Tracing [3]. Gruber et al. [17] showed an image-space
approach which directly works on pixel colors and the depth image for
near-field illumination. Earlier, Gruber et al. [16] estimated a distant
monochromatic EM in SH basis from observations of many surface
points on arbitrary geometry. Differential rendering based on PRT and
ray-casting for occlusion detection is applied to augment the scene.
In accordance to us, the authors assume a Lambertian reflectance for
real surfaces, but they also assume distant light, while we are able to
compute colored near-field illumination. Zhang et al. [45] presented a
differential rendering approach for several Mixed Reality operations
that runs only on a tablet PC. This approach requires a semi-automatic
mesh reconstruction from the recorded point data and a non-linear
optimization (15-30 min). We consider the extension of our approach
to use such a global exposure compensation as part of future research.

Reconstructing 3D Geometry. There are different ways to create a
3D model using a moving depth camera. Kinect Fusion [20] uses a
volumetric data structure and a signed distance function to reconstruct
a 3D mesh. Alternatively, a 3D voxel model can be constructed using a
Hashing approach [33]. Several extensions exist for these methods [5,
43, 44]. Our method does not build a new geometry representation but
instead works on the 3D point cloud with HDR color values, acquired

by looking around with the tablet camera, without any limitations on
the scene extent.

Color Compensation. For most mobile devices, exposure time and
white balance of the camera change automatically without manual con-
trol. Therefore, a color compensation must be included when recording
the real radiance values by moving the mobile camera. Possible so-
lutions for this problem are the exposure and vignetting calibration
for stitching panoramic images [13] and the radiometric calibration
for videos [18, 26]. For stitching an HDR environment map, Kán [22]
showed that this be can recorded with a mobile device if the exposure
time of the camera is known. lIKE Kán, Meilland et al. [32] assume
that all camera parameters can be fixed. Allowing shutter speed to be
adjusted automatically results in a single degree of freedom that can
easily be estimated or found in the meta-data of the images. In this
paper, we present an approach that deals with devices that allow no
control of the acquisition parameters and offer no meta-data per image.
The video preview mode that is used for AR applications is subject to
these restrictions [22].

To address this issue, Knecht et al. [28] adaptively map the colors of
virtual objects to the colors present in the current camera image. The
general idea is to create a mapping between the camera image and the
partial solution LSEnv of the differential rendering. Applying the map
to virtual objects yields coherent colors. However, to compute LSEnv,
a scene reconstruction containing material properties is required. Our
goal is to find a mapping that allows to create such a reconstruction.

Recently, exposure correction methods were used for the correction
of recorded color values of a Kinect camera [36] and for the color
values of a tablet camera [45]. While these solutions search for a global
optimum of a given set of images, our method works progressively for
each new camera image on the tablet PC.

Capturing Illumination. Several tools exist for quickly capturing the
real illumination, like light probes [6] or fish eye cameras [38]. As an
alternative, inverse rendering techniques can be used to reconstruct the
incoming illumination from the visible radiance values in the camera
image [35,36]. Meilland et al. presented an approach to create an image-
based representation of the scene that is then used for AR rendering
[32]. While mainly focusing on the pose estimation for proper spatial
registration between key frames, the registration of the image intensities
relies on the relative change in shutter speed. This works well if all
other camera settings can be fixed. If not, the compensation presented in
this paper can help as it deals with a general linear color transformation.
Storing radiance directly in the point cloud is easier but requires a
good pose estimation. For rendering, Meilland et al. create virtual light
probes and extract a few discrete light sources for shadow computations.
We also render virtual light probes (EM/DIT), but we consider all
directions for light computations and shadows respectively. Eventually,
theirs and our approach are following the same goal of capturing the
environment scene including geometry and radiance. At the point where
the virtual light probes are created, both approaches can be exchanged.

3 OVERVIEW

We are using the Google Tango Development Kit1 which provides an
LDR image, a 3D pose estimation of the camera, and a sparse depth
image as well as timestamps for each of them. Based on this input the
following steps are performed:

Color Compensation Estimation. To cope with unknown color com-
pensation applied by mobile camera drivers, we estimate this compen-
sation with respect to the already captured scene (see Sec. 4). The
previous captured parts are rendered from the new camera position and
the resulting reference image is compared to the current input image.
Pixels that probably show the same real-world geometry are selected
and used in a system of equations to estimate the transformation that
maps the color of the input pixels to the color of the reference pixels.
This transformation is applied to all pixels of the most recent LDR
input image which yields a corrected input image for further processing
and for augmentations later.

1Google. Project Tango Developer Website. 2017

2476 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

Fig. 2. G-Buffer. Left to right : splatted environment sample depths, filled depths, sample normals, filled normals, corrected color image. The last
image shows the radiance of the samples. It is not used for rendering but as reference image during the compensation estimation.

Capturing the Environment. The captured scene is stored as an
unstructured point cloud, which is updated every time a new set of
samples is provided by the depth sensor. These samples are back-
projected from image space into 3D world space and the resulting
position is stored with further information like corrected color and
estimated normal. We call these small structs Environment Samples
and store them in a probabilistic hashmap [19]. The normal estimation,
insertion and deletion of samples is detailed in Sec. 5.

G-Buffer as AR basis. To allow for basic occlusion between virtual
and real objects a z-buffer containing the real-world objects is required.
Splatting the point cloud into screen space yields the z-buffer but also
normals and colors – which are actually used as reference image in the
color compensation step and for material estimation during rendering.
After filling holes by push pull steps [31], we have a valid G-Buffer [40]
that can be used for a basic and more advanced AR rendering (see
Figure 2). As the G-Buffer generation is straightforward we will not
provide further details. Note that we do not need the depth sensor
anymore. So, as long as the camera pose is provided, any device can be
used. However, depth sensing could be used to improve the G-Buffer
in future extensions.

Coherent Rendering. For the rendering of the virtual objects, we
suggest using an image-based ray tracing variant. Therefore, we com-
bine GPU Importance Sampling [2] with Impostor Tracing [42]. A
Distance Impostor (DI), basically a RGB-Depth environment map, cen-
tered around the virtual object, serves as input. This structure is similar
to Reflective Shadow Maps [4] and is created just like the G-Buffer
before. We apply three alternative implementations for differential
rendering [6]: the suggested Distance Impostor Tracing (DIT), standard
Environment Mapping (EM) and Voxel Cone Tracing (VCT); for compa-
rison and to emphasize the flexibility of the approach. We also present
an improved sampling strategy tailored for differential rendering (see
Sec. 6 and 7).

Inverse Color Compensation. Since the unknown compensation, es-
timated in the first step, was introduced by the vendors to look pleasant
to the user, we transform the augmented image back into the original
input image color space assuming that this results in an adequate tone
mapping.

4 COLOR COMPENSATION ESTIMATION

Assuming we already captured parts of the environment and these parts
are at least partially visible in the current camera image, we aim for
estimating a transformation to map between the visible colors of the
overlapping areas. Figure 3 illustrates the basic idea. The inputs at
time t are a camera image in an unknown color space and a rendering
of the partially acquired scene in the reference color space. We select
pairs of pixels from the images that probably show the same real-
world geometry. The pixels selected from the input image form the
set Ut = {ui} and pixels from the reference image the set Rt−1 = {ri},
respectively. After estimating the compensation function ct that maps
the color of the pixels in set Ut to the colors in Rt−1, we can apply
the function to all pixels of the input image to transform them into the
reference color space. Additionally, we obtain the inverse function to
map augmented images back into the original camera color space:

ct : Ut → Rt−1 c−1
t : Rt−1 → Ut

Fig. 3. Color Compensation. Top left : A camera input image in an
unknown color space. Top right : The corresponding reference image
rendered from the point cloud (see Sec. 6.1). Bottom left : The color-
coded selection of sample pairs (green = valid). Bottom right : The
corrected input image in the reference color space. Note that this process
can output HDR values outside the [0,1] range.

4.1 Selecting Sample Pairs

The selection of pixels that are used in the linear system decides about
the robustness of the result. On one hand, we need a large set of samples
to get a good estimation. On the other hand, we need to avoid wrong
pairs, for instance based on occlusion of not yet scanned geometry. In
the first step, we remove all pixels that are easy to reject. This includes
pixels that:

• are under or over-saturated in the camera image,

• have no data in the rendering of the point cloud,

• have strong color gradients in either of the images.

Strong gradients are likely to contain edges that could be matched to
the wrong surface because of inaccurate tracking.

In the next filtering step, the pixel colors are transformed into HSV
color space. After mapping hue and saturation into [0,1], we reject
pairs that show a very strong discrepancy in color based on a coarse
filter applied on the Euclidean distance between hsv(ui) and hsv(ri)
in the hue-saturation-plane (·)hs. Note that the brightness value has no
influence here.

Assuming that changes in the input are small between two frames,
we can transform the input set Ut by the estimated function of the last
frame ct−1. Hence, ct−1 (ui) will be close to ri and stronger filtering
parameters can be used than before. This time, we reject pairs based
on their Euclidean distance in HSV space including the brightness
dimension. Figure 3 shows the input, the output and a color coding of
the filtering process. Green pixels are accepted with a certainty weight
wi according to their brightness, see Eq. (1). Blue ones are discarded
because of gradients, purple pixels were rejected due to saturation and
the red ones have a too large distance in HSV.

At this point, different models can be fitted to estimate ct . We
decided to use a linear transformation in linear RGB space to describe
ct . We also fitted a coarse approximation at that simply aligns the
average intensity per color channel. It serves as backup in case of

failure, e.g., because of too few samples. Depending on the sensor,
other color spaces and models might work better.

We choose a linear transformation here because we cannot make
assumptions about the actual type of correction. However, we want to
find a robust estimation that can deal with basic operations like a scale
in brightness, small color shifts introduced by changing white balance
and simple contrast enhancements. To allow any of these operations,
the input colors need to be in a linear color space. Ideally, this requires
a transformation of the real input using the camera response curve
which is unknown, too. Debevec [7] shows how to reconstruct such
a camera curve for an exposure series. Unfortunately, it is not clear
how to reconstruct a camera response curve in a system without exact
control over the camera parameters. Based on the measurements in [45],
we achieved good results by assuming a default gamma curve of 2.2.

4.2 Color Map Approximation

In both, the approximation and the linear estimation, the samples are
weighted based on their similarity in the hue-saturation-plane:

wi =
(
1−min

(
1,�hsv(ui)hs −hsv(ri)hs�2

))β
. (1)

The exponent β allows to further penalize larger distances. In all our
scenes, β = 2 was chosen for at and β = 8 for ct . To get a coarse
approximation of the unknown color compensation, an average scaling
per color channel, s, is computed:

s =
r

u
=

∑
n
i ri ·wi

∑
n
i ui ·wi

,

where n the number of pixel pairs. The per color channel scaling results
in the approximation matrix At :

At =

[
sr 0 0
0 sg 0
0 0 sb

]

.

4.3 Linear Map Estimation

To setup the linear system, the sample sets are written as matrices. The
estimation function ct is described as a linear matrix Ct :

Ut =

[
u1r

u2r
. . . unr

u1g
u2g

. . . ung

u1b
u2b

. . . unb

]

with ui ∈ Ut

Rt−1 =

[
r1r

r2r
. . . rnr

r1g
r2g

. . . rng

r1b
r2b

. . . rnb

]

with ri ∈ Rt−1

Ct ·Ut = Rt−1.

To solve for the compensation matrix Ct we minimize the following
energy function:

argmin
Ct

�Wt (Ct ·Ut −Rt−1)�2 ,

where the diagonal matrix Wt ∈ nb×nb holds the weights of the sample
pairs Wii =

√
wi computed by Equation (1). Solving in the sense of

least squares yields:

Ct =

((

Ut ·W 2
t ·UT

t

)−1(

Ut ·W 2
t ·RT

t−1

))T

.

Further, we can incorporate knowledge about the expected transfor-
mation. We know that the change in exposure is a strong influence
factor that basically scales the brightness, and this scaling factor is
already computed by the approximation At . To improve the robustness,
a regularization can be applied to force the solutions closer towards At .
Therefore, the energy to minimize is changed to:

argmin
Ct

�Wt (Ct ·Ut −Rt−1)�2 + γ �Ct −At�2 ,

k
X

dcenter
ID

k

Fig. 4. Normal Estimation. Top: Sparse depth sample given as input are
spanned to overlapping disks. All disks that overlap a certain pixel are
added into a list X at that pixel. The k̂ elements in the list form the local
neighborhood of the pixel. Bottom left: Color coded number of elements
used to fit a plane, surface normals (center) and improved depth (right).

Now, solving in the sense of least squares yields:

Ct =

((

Ut ·W 2
t ·UT

t +γI
)−1

·
(

Ut ·W 2
t ·RT

t−1+γAt

))T

, (2)

where I is the identity matrix and γ a small scalar factor, set to 5 ·10−2

in all our examples.
Note that both matrices in the inner braces of Equation (2) are of

size 3× 3 so they can easily be computed on the GPU. In fact, the
entire process of estimating At and Ct requires only one iteration over
all sample pairs and a parallel reduce operation to compute the sums
and the matrix products.

For a large number of sample pairs, usually n > 2000 in our experi-
ments, and input images that do not lack information in one or more
channels completely, the system is nonsingular and can be inverted.
This is important to transform rendering results back into the original
color space of the input image, as described in Sec. 6.6.

If the sample count is below this threshold, the approximation At is
used and the frame is marked as approximated to skip the capturing of
environment samples for this frame. In the first frame we initialize the
system by using the identity, C0 = I, which renders the color space of
the first frame the reference color space. While moving in the scene,
darker and brighter areas are observed with automatically selected
appropriate camera settings. Hence, floating point precision images of
different levels of brightness are provided for further HDR processing.

This approach is applicable to any camera system, independent of
the availability of a depth sensor. However, depth information could be
used in pair filtering.

5 CAPTURING THE ENVIRONMENT

The goal of this stage of the pipeline is to create a reconstruction of
the real environment. For basic augmentations, the position of the
real surface is sufficient, whereas for coherent rendering, normals are
required as well. As input serve the sparse depth image delivered by the
sensor (see Figure 4, gray dot over the color image) and the corrected
camera image to gather corresponding color values. Each measured
sample is back-projected to world space coordinates and stored in a
buffer. Its buffer index is denoted as unique sample id i. Normals
could be approximated by computing the gradient of the interpolated
positions. To focus on smooth normals, we address the problem by
fitting a plane into the samples of the local neighborhood of each pixel
in the sparse depth image.

Figure 4 illustrates this process step by step. First, we identify the
samples of the local neighborhood by using the rasterization pipeline
of the GPU. Therefore, we span a disk around each sample. The radius
depends on the resolution of the depth image and the density of the
measured samples. It is a device specific constant that must be specified
such that the number of overlaps per pixel equals the size of the desired
neighborhood k. For each pixel of the depth image, a list of size k is
used to store the ids of the overlapping disks and thereby the pointers
to all samples of the local neighborhood.

ROHMER ET AL.: NATURAL ENVIRONMENT ILLUMINATION: COHERENT INTERACTIVE AUGMENTED REALITY FOR MOBILE . . . 2477

Fig. 2. G-Buffer. Left to right : splatted environment sample depths, filled depths, sample normals, filled normals, corrected color image. The last
image shows the radiance of the samples. It is not used for rendering but as reference image during the compensation estimation.

Capturing the Environment. The captured scene is stored as an
unstructured point cloud, which is updated every time a new set of
samples is provided by the depth sensor. These samples are back-
projected from image space into 3D world space and the resulting
position is stored with further information like corrected color and
estimated normal. We call these small structs Environment Samples
and store them in a probabilistic hashmap [19]. The normal estimation,
insertion and deletion of samples is detailed in Sec. 5.

G-Buffer as AR basis. To allow for basic occlusion between virtual
and real objects a z-buffer containing the real-world objects is required.
Splatting the point cloud into screen space yields the z-buffer but also
normals and colors – which are actually used as reference image in the
color compensation step and for material estimation during rendering.
After filling holes by push pull steps [31], we have a valid G-Buffer [40]
that can be used for a basic and more advanced AR rendering (see
Figure 2). As the G-Buffer generation is straightforward we will not
provide further details. Note that we do not need the depth sensor
anymore. So, as long as the camera pose is provided, any device can be
used. However, depth sensing could be used to improve the G-Buffer
in future extensions.

Coherent Rendering. For the rendering of the virtual objects, we
suggest using an image-based ray tracing variant. Therefore, we com-
bine GPU Importance Sampling [2] with Impostor Tracing [42]. A
Distance Impostor (DI), basically a RGB-Depth environment map, cen-
tered around the virtual object, serves as input. This structure is similar
to Reflective Shadow Maps [4] and is created just like the G-Buffer
before. We apply three alternative implementations for differential
rendering [6]: the suggested Distance Impostor Tracing (DIT), standard
Environment Mapping (EM) and Voxel Cone Tracing (VCT); for compa-
rison and to emphasize the flexibility of the approach. We also present
an improved sampling strategy tailored for differential rendering (see
Sec. 6 and 7).

Inverse Color Compensation. Since the unknown compensation, es-
timated in the first step, was introduced by the vendors to look pleasant
to the user, we transform the augmented image back into the original
input image color space assuming that this results in an adequate tone
mapping.

4 COLOR COMPENSATION ESTIMATION

Assuming we already captured parts of the environment and these parts
are at least partially visible in the current camera image, we aim for
estimating a transformation to map between the visible colors of the
overlapping areas. Figure 3 illustrates the basic idea. The inputs at
time t are a camera image in an unknown color space and a rendering
of the partially acquired scene in the reference color space. We select
pairs of pixels from the images that probably show the same real-
world geometry. The pixels selected from the input image form the
set Ut = {ui} and pixels from the reference image the set Rt−1 = {ri},
respectively. After estimating the compensation function ct that maps
the color of the pixels in set Ut to the colors in Rt−1, we can apply
the function to all pixels of the input image to transform them into the
reference color space. Additionally, we obtain the inverse function to
map augmented images back into the original camera color space:

ct : Ut → Rt−1 c−1
t : Rt−1 → Ut

Fig. 3. Color Compensation. Top left : A camera input image in an
unknown color space. Top right : The corresponding reference image
rendered from the point cloud (see Sec. 6.1). Bottom left : The color-
coded selection of sample pairs (green = valid). Bottom right : The
corrected input image in the reference color space. Note that this process
can output HDR values outside the [0,1] range.

4.1 Selecting Sample Pairs

The selection of pixels that are used in the linear system decides about
the robustness of the result. On one hand, we need a large set of samples
to get a good estimation. On the other hand, we need to avoid wrong
pairs, for instance based on occlusion of not yet scanned geometry. In
the first step, we remove all pixels that are easy to reject. This includes
pixels that:

• are under or over-saturated in the camera image,

• have no data in the rendering of the point cloud,

• have strong color gradients in either of the images.

Strong gradients are likely to contain edges that could be matched to
the wrong surface because of inaccurate tracking.

In the next filtering step, the pixel colors are transformed into HSV
color space. After mapping hue and saturation into [0,1], we reject
pairs that show a very strong discrepancy in color based on a coarse
filter applied on the Euclidean distance between hsv(ui) and hsv(ri)
in the hue-saturation-plane (·)hs. Note that the brightness value has no
influence here.

Assuming that changes in the input are small between two frames,
we can transform the input set Ut by the estimated function of the last
frame ct−1. Hence, ct−1 (ui) will be close to ri and stronger filtering
parameters can be used than before. This time, we reject pairs based
on their Euclidean distance in HSV space including the brightness
dimension. Figure 3 shows the input, the output and a color coding of
the filtering process. Green pixels are accepted with a certainty weight
wi according to their brightness, see Eq. (1). Blue ones are discarded
because of gradients, purple pixels were rejected due to saturation and
the red ones have a too large distance in HSV.

At this point, different models can be fitted to estimate ct . We
decided to use a linear transformation in linear RGB space to describe
ct . We also fitted a coarse approximation at that simply aligns the
average intensity per color channel. It serves as backup in case of

failure, e.g., because of too few samples. Depending on the sensor,
other color spaces and models might work better.

We choose a linear transformation here because we cannot make
assumptions about the actual type of correction. However, we want to
find a robust estimation that can deal with basic operations like a scale
in brightness, small color shifts introduced by changing white balance
and simple contrast enhancements. To allow any of these operations,
the input colors need to be in a linear color space. Ideally, this requires
a transformation of the real input using the camera response curve
which is unknown, too. Debevec [7] shows how to reconstruct such
a camera curve for an exposure series. Unfortunately, it is not clear
how to reconstruct a camera response curve in a system without exact
control over the camera parameters. Based on the measurements in [45],
we achieved good results by assuming a default gamma curve of 2.2.

4.2 Color Map Approximation

In both, the approximation and the linear estimation, the samples are
weighted based on their similarity in the hue-saturation-plane:

wi =
(
1−min

(
1,�hsv(ui)hs −hsv(ri)hs�2

))β
. (1)

The exponent β allows to further penalize larger distances. In all our
scenes, β = 2 was chosen for at and β = 8 for ct . To get a coarse
approximation of the unknown color compensation, an average scaling
per color channel, s, is computed:

s =
r

u
=

∑
n
i ri ·wi

∑
n
i ui ·wi

,

where n the number of pixel pairs. The per color channel scaling results
in the approximation matrix At :

At =

[
sr 0 0
0 sg 0
0 0 sb

]

.

4.3 Linear Map Estimation

To setup the linear system, the sample sets are written as matrices. The
estimation function ct is described as a linear matrix Ct :

Ut =

[
u1r

u2r
. . . unr

u1g
u2g

. . . ung

u1b
u2b

. . . unb

]

with ui ∈ Ut

Rt−1 =

[
r1r

r2r
. . . rnr

r1g
r2g

. . . rng

r1b
r2b

. . . rnb

]

with ri ∈ Rt−1

Ct ·Ut = Rt−1.

To solve for the compensation matrix Ct we minimize the following
energy function:

argmin
Ct

�Wt (Ct ·Ut −Rt−1)�2 ,

where the diagonal matrix Wt ∈ nb×nb holds the weights of the sample
pairs Wii =

√
wi computed by Equation (1). Solving in the sense of

least squares yields:

Ct =

((

Ut ·W 2
t ·UT

t

)−1(

Ut ·W 2
t ·RT

t−1

))T

.

Further, we can incorporate knowledge about the expected transfor-
mation. We know that the change in exposure is a strong influence
factor that basically scales the brightness, and this scaling factor is
already computed by the approximation At . To improve the robustness,
a regularization can be applied to force the solutions closer towards At .
Therefore, the energy to minimize is changed to:

argmin
Ct

�Wt (Ct ·Ut −Rt−1)�2 + γ �Ct −At�2 ,

k
X

dcenter
ID

k

Fig. 4. Normal Estimation. Top: Sparse depth sample given as input are
spanned to overlapping disks. All disks that overlap a certain pixel are
added into a list X at that pixel. The k̂ elements in the list form the local
neighborhood of the pixel. Bottom left: Color coded number of elements
used to fit a plane, surface normals (center) and improved depth (right).

Now, solving in the sense of least squares yields:

Ct =

((

Ut ·W 2
t ·UT

t +γI
)−1

·
(

Ut ·W 2
t ·RT

t−1+γAt

))T

, (2)

where I is the identity matrix and γ a small scalar factor, set to 5 ·10−2

in all our examples.
Note that both matrices in the inner braces of Equation (2) are of

size 3× 3 so they can easily be computed on the GPU. In fact, the
entire process of estimating At and Ct requires only one iteration over
all sample pairs and a parallel reduce operation to compute the sums
and the matrix products.

For a large number of sample pairs, usually n > 2000 in our experi-
ments, and input images that do not lack information in one or more
channels completely, the system is nonsingular and can be inverted.
This is important to transform rendering results back into the original
color space of the input image, as described in Sec. 6.6.

If the sample count is below this threshold, the approximation At is
used and the frame is marked as approximated to skip the capturing of
environment samples for this frame. In the first frame we initialize the
system by using the identity, C0 = I, which renders the color space of
the first frame the reference color space. While moving in the scene,
darker and brighter areas are observed with automatically selected
appropriate camera settings. Hence, floating point precision images of
different levels of brightness are provided for further HDR processing.

This approach is applicable to any camera system, independent of
the availability of a depth sensor. However, depth information could be
used in pair filtering.

5 CAPTURING THE ENVIRONMENT

The goal of this stage of the pipeline is to create a reconstruction of
the real environment. For basic augmentations, the position of the
real surface is sufficient, whereas for coherent rendering, normals are
required as well. As input serve the sparse depth image delivered by the
sensor (see Figure 4, gray dot over the color image) and the corrected
camera image to gather corresponding color values. Each measured
sample is back-projected to world space coordinates and stored in a
buffer. Its buffer index is denoted as unique sample id i. Normals
could be approximated by computing the gradient of the interpolated
positions. To focus on smooth normals, we address the problem by
fitting a plane into the samples of the local neighborhood of each pixel
in the sparse depth image.

Figure 4 illustrates this process step by step. First, we identify the
samples of the local neighborhood by using the rasterization pipeline
of the GPU. Therefore, we span a disk around each sample. The radius
depends on the resolution of the depth image and the density of the
measured samples. It is a device specific constant that must be specified
such that the number of overlaps per pixel equals the size of the desired
neighborhood k. For each pixel of the depth image, a list of size k is
used to store the ids of the overlapping disks and thereby the pointers
to all samples of the local neighborhood.

2478 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

In the second step, a plane is fitted to the world space positions of
each pixel’s list. We now consider an arbitrary pixel and denote the
respective list as set X containing the samples x. Generally, this list
is not entirely filled, so we define the number of samples in the list

as k̂ ≤ k. Even though plane fitting in 3D is a common problem, we
need to perform this task for each pixel as fast as possible on the GPU.
Since it is an eigenvalue and eigenvector problem, the common solution
requires a Singular Value Decomposition, which is not feasible in our
context. By reformulating the problem, the solution can be found easier.
Like in a Principal Component Analysis we first shift the mean of all
samples into the origin of a local coordinate system, so the resulting
plane will contain the origin:

x̂i = xi −
1

k̂
∑

j

x j for i = 1, . . . , k̂

Each vector x̂ defines a direction from the local origin. The normal n,
we are looking for, is perpendicular to that direction:

x̂i
T n = xi ·nx + yi ·ny + zi ·nz = 0

The trick to avoid the SVD is to split the problem into three smaller
ones that are easy to solve. After shifting by the mean, we are now
looking for a plane that intersects the origin. There are two degrees of
freedom describing the rotation of the plane, but we have three unknown
components of n. We now assume that the normal does not lie in the
xy-plane. In that case, we can set nz = 1 such that xi ·nx +yi ·ny =−zi

and solve the overdetermined system using normal equations for the
other two components:

[

∑xixi ∑xiyi

∑yixi ∑yiyi

][
nx

ny

]

=−
[

∑xizi

∑yizi

]

.

This small system can be solved efficiently by using the determinant

and Cramer’s rule which yields the normal direction
[
nx ny 1

]T
that

just must be normalized.
However, this does not work if the normal lies in the xy-plane in

which case the determinant gets zero. Therefore, the assumption is
altered and the determinant is computed for all three cases. Eventually,
only the case with the largest determinant is evaluated to compute the
plane normal n. In combination with the mean sample position that
was used to shift the samples into the local origin, a world space plane
is defined. This approach to plane fitting in 3D is not new2, but it is
well suited for a GPU implementation.

To avoid fitting planes across discontinuities in depth we search for
the sample with the smallest screen space distance to the considered
pixel and discard samples based on their depth distance to this reference
sample. In our experiments, a threshold of 0.1m shows good results
even when the surface is seen from a grazing angle.

Intersecting the fitted plane with the view ray from the camera
through the considered pixel yields a distance that is used to refine the
depth image and thereby the position of the samples.

Figure 4 shows the resulting depth and normal image as well as a

visualization of k̂ for each pixel where red means a small number and
dark blue the maximum number. As can be seen, most of the pixels
show a medium blue so the lists are not entirely filled. This is intended
as the radius, that is used during the filling of the list, needs be chosen
conservatively. If the radius is too large it is possible to miss neighbors
because the list is already full. In case with two or less samples in a
list, we cannot estimate a normal, which is visualized by dark gray
color or black if there was no sample at all. We also stop the normal
computation if the largest determinant is close to zero which means
that the system is of bad condition. This case is illustrated by a light
gray.

After creating the depth and normal image, both are sampled at the
locations of the input samples and the gathered information are added
as Environment Sample to the point cloud describing the scene. This
point cloud is stored in a probabilistic hash grid with space for 4M

2Emil Ernerfeldt. Fitting a plane to many points in 3D. Blog, 2015

model queryenvironment query

point cloud virtual mesh

Distance Impostor (DI)
RGB-D Environment Map

voxel
volume

local voxel
volume

VCT
impostor

tracing (DIT)
environment

mapping (EM)
VCTrasterization

indirect
visible

directly
 visible

choose between alternatives

speed qualitytradeoff

differential rendering

Fig. 5. Overview of Techniques and Data Structures. The differential
rendering queries radiance of the environment and the virtual object.
Different implementations can be used to answer the request. In general,
such a query can be interpreted as ray or cone cast.

elements and a virtual cell size of 0.05m. If there already is an element
at the insertion address, it is replaced randomly with a probability of
the inverse number of collisions in that cell. Therefore, a counter per
cell keeps track of the collisions.

Besides adding elements to the cloud, samples can be removed, too.
This is important to handle movements of real objects and erroneous
samples. An old Environment Sample can be removed if it has a smaller
depth than the current depth image at the same location. Obviously, it
is not present in the current view and therefore should not exist. The
removed samples are often those, which have been captured over a
larger distance. Nevertheless, these far samples cannot be ignored in
the first place, because they are valuable for generating the reference
image.

6 INTERACTIVE COHERENT RENDERING

As illustrated in Figure 5, our differential rendering system uses an
interface to query radiance from the scene and from the virtual object.
By providing alternative implementations for the environment queries
we can offer different quality/performance options. However, we are
also able to compare the proposed Distance Impostor Tracing (DIT) to
the commonly used Environment Mapping (EM) (related to [6]) and
Voxel Cone Tracing (VCT) (related to [3, 11]).

In Sec. 6.1 we describe how the captured point cloud is proces-
sed into the data structures required by the different implementations.
We introduce the representation of the virtual object in Sec. 6.2 and
show how to use the scene representation to illuminate this object in
Sec. 6.3 and Sec. 6.5. To compute the influence of the object onto
the environment we use differential lighting as explained in Sec. 6.4.
Details to the final composition are covered in Sec. 6.6.

Details on how to solve equations in Sec. 6.3 and 6.4 by using Monte
Carlo integration are provided in the following Sec. 7. Here we intro-
duce an idea to improve the rendering for few samples incorporating
knowledge of the object influence.

6.1 Scene Representation

The differential rendering, including the rendering and shading of the
virtual object, requires to query the environment illumination multiple
times. Each of these queries is a ray or cone cast from the surface
position x into the environment to look up the radiance incident from
the direction of the ray, the direction of solid angle ωi. Instead of
dealing with large sets of points, we use dedicated representations for
the techniques to realize this query. For EM and DIT this representation
is a Distance Impostor (DI), whereas for VCT a voxel volume is used.

(Scene) Voxel Volume Cone tracing requires a dense regular voxel
volume with a filled mipmap chain [3, 11]. Therefore, all samples are
added to the most detailed mipmap level of the volume where each
voxel stores the RGB radiance of the environment samples and an
opacity value of 1.0. After generating the mipmap chain, the voxels in
the higher levels store averaged radiance and opacity values for lookups
with larger cone radii. Assuming a static scene, the volume is filled only

n
viewdir

Fig. 6. Integrating the incoming radiance on a virtual object for rendering
(left) and on a real surface for material estimation (right).

once after completing the environment acquisition and contains the
entire scene. Depending on the size and the resolution of the volume,
this data structure is usually limited due to the memory requirement.

Distance Impostors To be able to deal with larger scenes we suggest
using a distance impostor which is an environment map that stores
radiance and distance into all directions from a specified center position.
It can be created by splatting – just like the G-Buffer – while using
a cube map as target. The position of the DI should be close to the
virtual object – ideally at the center of it. Thus, it needs to be updated
as the object is moved in the scene, but depending on the size of the
object a threshold can be used to limit the updates to trigger only after
larger changes in position. The orientation of the map can be aligned
with the world coordinate system for easier access. To enable ray or
cone casting from positions different from the center position we use
Impostor Tracing presented by Szirmay-Kalos et al. [42]. Here, the
direction for the lookup into the map is refined iteratively based on the
stored distance to approximate the correct intersection point of the ray
with the environment.

To favor speed over accuracy we also investigate standard environ-
ment mapping which simply uses the color channels of the DI but also
depends on the depth for occlusion tests.

6.2 Virtual Object Representation

To compute the shading of virtual objects there are no special require-
ments and any triangle meshes can be used.

While the virtual object itself is rendered using the rasterization
pipeline, additional ray or cone casts are required for indirections to
enable self-shadows and reflections for instance (see Figure 5). Inde-
pendent of the scene representation, we decided to use VCT for this
task as testing the whole triangle mesh for intersections is too expen-
sive. Therefore, we use a solid volume with mipmaps that is small,
tightly fit to the object, and is defined in the object’s local coordinate
system. The solid voxelization is done on the GPU [8] and does not
change over time as long as the object is not deformed, e.g., by vertex
skinning [25]. Rigged transformations can be applied to the ray or
cone instead of rebuilding the volume. However, the meshes need to
be closed (watertight), which is a limitation of the solid voxelization
algorithm [8]. The volume also stores materials and local normals at
the boundary voxels.

6.3 Rendering the Virtual Object

To compute a physically correct shading of the virtual object surface
we aim for solving Kajiya’s rendering equation [21]:

L(x,ωo) =
∫

Ω
L(x,ωi) fr (x,ωi,ωo) cosθ ∂ωi (3)

where L is the radiance from or into a direction ω, fr is the Bidirectional
Reflectance Distribution Function (BRDF) which describes how much
of the (incident) irradinace is reflected as radiance into the outgoing
direction ωo at surface position x, θ is the angle between the surface
normal and the incoming direction ωi. The integration domain Ω is the
hemisphere over the surface, as visualized in Figure 6 (left). The figure
also shows outgoing sample directions that are concentrated around the
reflected view direction (ωo). This distribution depends on the BRDF,

in our case a Blinn-Phong BRDF for glossy materials, but any other
BDRF that can be sampled properly can be used instead. To evaluate
this equation, we use ray or cone tracing into these reflected directions
(see Sec. 7).

To include self-shadowing of the virtual object, each ray is not only
traced in the environment but also in the object’s volume. In case the ray
hits opaque voxels, the ray is stopped and the radiance, L(ωi), is set to
zero or to a predefined ambient value to compensate the missing indirect
light. Optionally, one or more secondary rays are cast recursively, as
usually do in offline rendering. As the voxelization stores normals and
material coefficients this is supported and used in Figure 1 (left). Note
the reflected wheels on the body of the toy car.

6.4 Differential Background Rendering

For a coherent rendering, we also need to estimate the influence of the
virtual object on the environment. Therefore, we use Differential Ren-
dering [6] to compute a correction image from two global illumination
simulations: ∆LS = LSOb j −LSEnv. Both simulations require to solve
the same integral we used before (see Equation (3)) but at this point we
are missing the material coefficients for the BRDF. Thus, the reflectance
parameters for visible surfaces must be estimated before computing
the integrals. Therefore, we assume that the environment material is
Lambertian. Hence, the BRDF is independent of the observer direction
ωo and specified by the constant reflectance coefficient ρ . Equation (3)
is then solved for ρ [6]. This involves an integral over the hemisphere
above a real surface point x as shown in Figure 6 (right), where L(x) is
equal to the color visible in the corrected input image:

L(x) = L(x,ωo) =
∫

Ω
L(x,ωi)

ρ

π
cosθ ∂ωi (4)

ρ = π
L(x)

∫

Ω L(x,ωi) cosθ ∂ωi
. (5)

Now, the influence of the virtual object, ∆L(x), can be estimated by
solving an integral similar to Equation (4) where ∆L(x,ωi) is queried
for each incoming direction instead of L(x,ωi). The three different
cases that can occur are illustrated in Figure 7.

Ray 1 does not hit the virtual object and ends in the environment. In
this case, the influence in incoming radiance ∆L(x,ωi) at the surface
point is zero.

Ray 2 hits the virtual object before it hits the environment, (dObj2
<

dEnv2
). Here we gather the radiance from the environment as well as the

radiance of the object and compute ∆L(x,ωi) = LObj −LEnv. Note that
the object radiance, LObj, is generally not known for rays from arbitrary
directions, so we again could stop and return zero or an ambient term.
But instead we trace a reflected ray into the environment and compute
an indirect light bounce. For a correct result, this bounce needs to be
computed like in Sec. 6.3. By assuming a diffuse virtual object (only
for this bounce), we can achieve color bleeding (e.g., on the wall in
Figure 9), but we neglect specular effects like caustics that appear when
bright light is reflected on highly specular objects like in a metal ring
on a table.

In the last case, represented by ray 3, the ray hits the environment
before the virtual object (dObj3

> dEnv3
) so ∆L(x,ωi) is also zero. Note

that these kinds of early occlusions are the main source of artifacts
when using impostor tracing. False positive and false negative visibility
tests are likely, as the correct ray directions might not be found or not
available.

Depending on the technique and data structure, this ray casting is
implemented differently, but the concept is the same in all cases.

6.5 Extension to Cone Casts

To speed up the ray tests and to reduce the noise, multiple rays can
be handled in bundles called cones. Compared to a ray in Figure 7 a
cone can cover multiple cases at once. Assume ray 1 and ray 2 are the
boundaries of such a cone. Then the environment is visible to a degree
α ∈ [0,1] and the object’s influence is weighted with 1−α . With

ROHMER ET AL.: NATURAL ENVIRONMENT ILLUMINATION: COHERENT INTERACTIVE AUGMENTED REALITY FOR MOBILE . . . 2479

In the second step, a plane is fitted to the world space positions of
each pixel’s list. We now consider an arbitrary pixel and denote the
respective list as set X containing the samples x. Generally, this list
is not entirely filled, so we define the number of samples in the list

as k̂ ≤ k. Even though plane fitting in 3D is a common problem, we
need to perform this task for each pixel as fast as possible on the GPU.
Since it is an eigenvalue and eigenvector problem, the common solution
requires a Singular Value Decomposition, which is not feasible in our
context. By reformulating the problem, the solution can be found easier.
Like in a Principal Component Analysis we first shift the mean of all
samples into the origin of a local coordinate system, so the resulting
plane will contain the origin:

x̂i = xi −
1

k̂
∑

j

x j for i = 1, . . . , k̂

Each vector x̂ defines a direction from the local origin. The normal n,
we are looking for, is perpendicular to that direction:

x̂i
T n = xi ·nx + yi ·ny + zi ·nz = 0

The trick to avoid the SVD is to split the problem into three smaller
ones that are easy to solve. After shifting by the mean, we are now
looking for a plane that intersects the origin. There are two degrees of
freedom describing the rotation of the plane, but we have three unknown
components of n. We now assume that the normal does not lie in the
xy-plane. In that case, we can set nz = 1 such that xi ·nx +yi ·ny =−zi

and solve the overdetermined system using normal equations for the
other two components:

[

∑xixi ∑xiyi

∑yixi ∑yiyi

][
nx

ny

]

=−
[

∑xizi

∑yizi

]

.

This small system can be solved efficiently by using the determinant

and Cramer’s rule which yields the normal direction
[
nx ny 1

]T
that

just must be normalized.
However, this does not work if the normal lies in the xy-plane in

which case the determinant gets zero. Therefore, the assumption is
altered and the determinant is computed for all three cases. Eventually,
only the case with the largest determinant is evaluated to compute the
plane normal n. In combination with the mean sample position that
was used to shift the samples into the local origin, a world space plane
is defined. This approach to plane fitting in 3D is not new2, but it is
well suited for a GPU implementation.

To avoid fitting planes across discontinuities in depth we search for
the sample with the smallest screen space distance to the considered
pixel and discard samples based on their depth distance to this reference
sample. In our experiments, a threshold of 0.1m shows good results
even when the surface is seen from a grazing angle.

Intersecting the fitted plane with the view ray from the camera
through the considered pixel yields a distance that is used to refine the
depth image and thereby the position of the samples.

Figure 4 shows the resulting depth and normal image as well as a

visualization of k̂ for each pixel where red means a small number and
dark blue the maximum number. As can be seen, most of the pixels
show a medium blue so the lists are not entirely filled. This is intended
as the radius, that is used during the filling of the list, needs be chosen
conservatively. If the radius is too large it is possible to miss neighbors
because the list is already full. In case with two or less samples in a
list, we cannot estimate a normal, which is visualized by dark gray
color or black if there was no sample at all. We also stop the normal
computation if the largest determinant is close to zero which means
that the system is of bad condition. This case is illustrated by a light
gray.

After creating the depth and normal image, both are sampled at the
locations of the input samples and the gathered information are added
as Environment Sample to the point cloud describing the scene. This
point cloud is stored in a probabilistic hash grid with space for 4M

2Emil Ernerfeldt. Fitting a plane to many points in 3D. Blog, 2015

model queryenvironment query

point cloud virtual mesh

Distance Impostor (DI)
RGB-D Environment Map

voxel
volume

local voxel
volume

VCT
impostor

tracing (DIT)
environment

mapping (EM)
VCTrasterization

indirect
visible

directly
 visible

choose between alternatives

speed qualitytradeoff

differential rendering

Fig. 5. Overview of Techniques and Data Structures. The differential
rendering queries radiance of the environment and the virtual object.
Different implementations can be used to answer the request. In general,
such a query can be interpreted as ray or cone cast.

elements and a virtual cell size of 0.05m. If there already is an element
at the insertion address, it is replaced randomly with a probability of
the inverse number of collisions in that cell. Therefore, a counter per
cell keeps track of the collisions.

Besides adding elements to the cloud, samples can be removed, too.
This is important to handle movements of real objects and erroneous
samples. An old Environment Sample can be removed if it has a smaller
depth than the current depth image at the same location. Obviously, it
is not present in the current view and therefore should not exist. The
removed samples are often those, which have been captured over a
larger distance. Nevertheless, these far samples cannot be ignored in
the first place, because they are valuable for generating the reference
image.

6 INTERACTIVE COHERENT RENDERING

As illustrated in Figure 5, our differential rendering system uses an
interface to query radiance from the scene and from the virtual object.
By providing alternative implementations for the environment queries
we can offer different quality/performance options. However, we are
also able to compare the proposed Distance Impostor Tracing (DIT) to
the commonly used Environment Mapping (EM) (related to [6]) and
Voxel Cone Tracing (VCT) (related to [3, 11]).

In Sec. 6.1 we describe how the captured point cloud is proces-
sed into the data structures required by the different implementations.
We introduce the representation of the virtual object in Sec. 6.2 and
show how to use the scene representation to illuminate this object in
Sec. 6.3 and Sec. 6.5. To compute the influence of the object onto
the environment we use differential lighting as explained in Sec. 6.4.
Details to the final composition are covered in Sec. 6.6.

Details on how to solve equations in Sec. 6.3 and 6.4 by using Monte
Carlo integration are provided in the following Sec. 7. Here we intro-
duce an idea to improve the rendering for few samples incorporating
knowledge of the object influence.

6.1 Scene Representation

The differential rendering, including the rendering and shading of the
virtual object, requires to query the environment illumination multiple
times. Each of these queries is a ray or cone cast from the surface
position x into the environment to look up the radiance incident from
the direction of the ray, the direction of solid angle ωi. Instead of
dealing with large sets of points, we use dedicated representations for
the techniques to realize this query. For EM and DIT this representation
is a Distance Impostor (DI), whereas for VCT a voxel volume is used.

(Scene) Voxel Volume Cone tracing requires a dense regular voxel
volume with a filled mipmap chain [3, 11]. Therefore, all samples are
added to the most detailed mipmap level of the volume where each
voxel stores the RGB radiance of the environment samples and an
opacity value of 1.0. After generating the mipmap chain, the voxels in
the higher levels store averaged radiance and opacity values for lookups
with larger cone radii. Assuming a static scene, the volume is filled only

n
viewdir

Fig. 6. Integrating the incoming radiance on a virtual object for rendering
(left) and on a real surface for material estimation (right).

once after completing the environment acquisition and contains the
entire scene. Depending on the size and the resolution of the volume,
this data structure is usually limited due to the memory requirement.

Distance Impostors To be able to deal with larger scenes we suggest
using a distance impostor which is an environment map that stores
radiance and distance into all directions from a specified center position.
It can be created by splatting – just like the G-Buffer – while using
a cube map as target. The position of the DI should be close to the
virtual object – ideally at the center of it. Thus, it needs to be updated
as the object is moved in the scene, but depending on the size of the
object a threshold can be used to limit the updates to trigger only after
larger changes in position. The orientation of the map can be aligned
with the world coordinate system for easier access. To enable ray or
cone casting from positions different from the center position we use
Impostor Tracing presented by Szirmay-Kalos et al. [42]. Here, the
direction for the lookup into the map is refined iteratively based on the
stored distance to approximate the correct intersection point of the ray
with the environment.

To favor speed over accuracy we also investigate standard environ-
ment mapping which simply uses the color channels of the DI but also
depends on the depth for occlusion tests.

6.2 Virtual Object Representation

To compute the shading of virtual objects there are no special require-
ments and any triangle meshes can be used.

While the virtual object itself is rendered using the rasterization
pipeline, additional ray or cone casts are required for indirections to
enable self-shadows and reflections for instance (see Figure 5). Inde-
pendent of the scene representation, we decided to use VCT for this
task as testing the whole triangle mesh for intersections is too expen-
sive. Therefore, we use a solid volume with mipmaps that is small,
tightly fit to the object, and is defined in the object’s local coordinate
system. The solid voxelization is done on the GPU [8] and does not
change over time as long as the object is not deformed, e.g., by vertex
skinning [25]. Rigged transformations can be applied to the ray or
cone instead of rebuilding the volume. However, the meshes need to
be closed (watertight), which is a limitation of the solid voxelization
algorithm [8]. The volume also stores materials and local normals at
the boundary voxels.

6.3 Rendering the Virtual Object

To compute a physically correct shading of the virtual object surface
we aim for solving Kajiya’s rendering equation [21]:

L(x,ωo) =
∫

Ω
L(x,ωi) fr (x,ωi,ωo) cosθ ∂ωi (3)

where L is the radiance from or into a direction ω, fr is the Bidirectional
Reflectance Distribution Function (BRDF) which describes how much
of the (incident) irradinace is reflected as radiance into the outgoing
direction ωo at surface position x, θ is the angle between the surface
normal and the incoming direction ωi. The integration domain Ω is the
hemisphere over the surface, as visualized in Figure 6 (left). The figure
also shows outgoing sample directions that are concentrated around the
reflected view direction (ωo). This distribution depends on the BRDF,

in our case a Blinn-Phong BRDF for glossy materials, but any other
BDRF that can be sampled properly can be used instead. To evaluate
this equation, we use ray or cone tracing into these reflected directions
(see Sec. 7).

To include self-shadowing of the virtual object, each ray is not only
traced in the environment but also in the object’s volume. In case the ray
hits opaque voxels, the ray is stopped and the radiance, L(ωi), is set to
zero or to a predefined ambient value to compensate the missing indirect
light. Optionally, one or more secondary rays are cast recursively, as
usually do in offline rendering. As the voxelization stores normals and
material coefficients this is supported and used in Figure 1 (left). Note
the reflected wheels on the body of the toy car.

6.4 Differential Background Rendering

For a coherent rendering, we also need to estimate the influence of the
virtual object on the environment. Therefore, we use Differential Ren-
dering [6] to compute a correction image from two global illumination
simulations: ∆LS = LSOb j −LSEnv. Both simulations require to solve
the same integral we used before (see Equation (3)) but at this point we
are missing the material coefficients for the BRDF. Thus, the reflectance
parameters for visible surfaces must be estimated before computing
the integrals. Therefore, we assume that the environment material is
Lambertian. Hence, the BRDF is independent of the observer direction
ωo and specified by the constant reflectance coefficient ρ . Equation (3)
is then solved for ρ [6]. This involves an integral over the hemisphere
above a real surface point x as shown in Figure 6 (right), where L(x) is
equal to the color visible in the corrected input image:

L(x) = L(x,ωo) =
∫

Ω
L(x,ωi)

ρ

π
cosθ ∂ωi (4)

ρ = π
L(x)

∫

Ω L(x,ωi) cosθ ∂ωi
. (5)

Now, the influence of the virtual object, ∆L(x), can be estimated by
solving an integral similar to Equation (4) where ∆L(x,ωi) is queried
for each incoming direction instead of L(x,ωi). The three different
cases that can occur are illustrated in Figure 7.

Ray 1 does not hit the virtual object and ends in the environment. In
this case, the influence in incoming radiance ∆L(x,ωi) at the surface
point is zero.

Ray 2 hits the virtual object before it hits the environment, (dObj2
<

dEnv2
). Here we gather the radiance from the environment as well as the

radiance of the object and compute ∆L(x,ωi) = LObj −LEnv. Note that
the object radiance, LObj, is generally not known for rays from arbitrary
directions, so we again could stop and return zero or an ambient term.
But instead we trace a reflected ray into the environment and compute
an indirect light bounce. For a correct result, this bounce needs to be
computed like in Sec. 6.3. By assuming a diffuse virtual object (only
for this bounce), we can achieve color bleeding (e.g., on the wall in
Figure 9), but we neglect specular effects like caustics that appear when
bright light is reflected on highly specular objects like in a metal ring
on a table.

In the last case, represented by ray 3, the ray hits the environment
before the virtual object (dObj3

> dEnv3
) so ∆L(x,ωi) is also zero. Note

that these kinds of early occlusions are the main source of artifacts
when using impostor tracing. False positive and false negative visibility
tests are likely, as the correct ray directions might not be found or not
available.

Depending on the technique and data structure, this ray casting is
implemented differently, but the concept is the same in all cases.

6.5 Extension to Cone Casts

To speed up the ray tests and to reduce the noise, multiple rays can
be handled in bundles called cones. Compared to a ray in Figure 7 a
cone can cover multiple cases at once. Assume ray 1 and ray 2 are the
boundaries of such a cone. Then the environment is visible to a degree
α ∈ [0,1] and the object’s influence is weighted with 1−α . With

2480 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

θ1
θ2
θ3
n

ray1

ray2

ray3

LEnv
LObj

dEnv2

dEnv3

dObj3

dObj2

x

Fig. 7. Estimating the difference in incoming radiance ∆L for different
directions based on the ray distance d. Three cases can be identified.

LObj and LEnv representing the average over the cone, the differential
radiance becomes:

∆L(x,ωi) = (1−α)(LObj −LEnv). (6)

To obtain LEnv we use the mipmap levels of the environment repre-
sentations. For VCT and EM we are following the known implemen-
tations in [3, 11] and [2] respectively. In case of DIT, the search for
the corrected central ray of the cone is performed on the most detailed
level of the DI. Only the final texture fetch to gather the radiance is
done in a coarser level, which depends on the size of the solid angle
and the distance to the surface.

For LObj we start and end cone marching at the boundaries of the
object’s bounding box and use a cone radius dependent step size as well
as radius dependent mipmap layers from the voxelization. Each voxel
contains the probability τ for a surface intersection. If the probability τ
is greater than zero, the object radiance is estimated using one of the
approaches explained in Sec. 6.4 (ray 2 case). The result is weighted
with the probability and the cone marching is proceeded. The following
steps must be weighted with the probability of continuation α which
is the product ∏s(1− τs) of all previous steps. These previous steps
can contain the occlusion between cone origin and object (ray 3 case).
Finally, when the cone left the object volume, α is the weight for the
environment as given in Equation (6).

6.6 Composition

During composition, the differential image and the virtual object are
added to the camera image in reference color space. Then, the inverse

color correction c−1
t (see Sec. 4) is applied to the augmented image to

transform it back into the input color space.

Figure 8 shows results and the capability of the compensation. While
the image in the top center shows the augmented original image, we
altered the input image by changing the brightness and introducing a
strong color shift. Applying the inverse operation to the augmented
image also transforms the colors of the virtual object which results in a
coherent integration of the new content.

7 ILLUMINATION ESTIMATION USING SAMPLING

The integral of a function f (x) can be estimated by a stochastic process
called Monte Carlo Integration [21]:

∫ b

a
f (x) ∂x ≈ 1

N

N

∑
i=1

f (xi)

p(xi)
, (7)

where p(xi) is the probability to produce sample xi. Any probability
density function (PDF) p can be used, but having a function which
scales with f yields the fastest convergence. Using such an improved
distribution function is called importance sampling. For rendering the
virtual object, Equation (3) is integrated on the GPU using the BRDF
as PDF, as described in [2].

For the material estimation, we need to solve Equation (5). Since
L(ω) is unknown we use the material-based cosine distribution p(ω) =
1/π cosθ . Here, θ is the angle between the surface normal of the

Fig. 8. Transforming back into input color space. Top center : original
input image augmented by a Buddha statue. Others: artificially altered
input images that have been transferred automatically into the reference
color space and eventually, after the augmentation, back into the input
space.

G-Buffer and the produced direction of ω. Applying Monte Carlo
integration gives:

ρ ≈ π
L(x)

1
N ∑

N
i=1

L(x,ωi) cosθ
1/π cosθ

=
L(x)

1
N ∑

N
i=1 L(x,ωi)

.

Applying the same scheme to Equation (4) while sampling the dif-
ferential values ∆L(x,ωi) directly (see Sec. 6.4) yields the estimation
for the differential rendering:

∆L(x,ωo)≈
1

N

N

∑
i=1

∆L(x,ωi)
ρ
π cosθ

1
π cosθ

=
ρ

N

N

∑
i=1

∆L(x,ωi) . (8)

Further, we can improve the sampling by incorporating the know-
ledge that ∆L(x,ωi) is zero when the ray misses the object (ray 1 case
in Figure 7), which is related to observations in [39]. Instead of just
skipping these rays, we try to keep to GPU utilization high by tracing
other more promising rays. This influences the probability which must
be corrected, as explained in the following.

First, we split the set of traced cones into two sets: a set F containing
all cones that miss the object (ray 1 case) and a set H holding the
remaining cones. Then, we divide H into disjoint sets Ha and Hb

dependent on ray cases 2 and 3. Accordingly, Equation (8) can be split
into three parts (omitting x for compactness):

∆L(ωo)≈
ρ

N

(

∑
ωi∈Ha

∆L(ωi)

︸ ︷︷ ︸

LHa

+ ∑
ωi∈Hb

∆L(ωi)

︸ ︷︷ ︸

LHb

+ ∑
ωi∈F

∆L(ωi)

︸ ︷︷ ︸

LF =0

)

. (9)

By using early intersection tests with the virtual object’s bounding
box, we can reject all samples in F before starting expensive tracing.
Consequently, the number of samples in H is decreasing with the
distance to the virtual object. To keep the GPU utilized, we increase N
and create a large set of N directions, test them against the bounding
box and record them for later tracing in a local array of size |Ha|< N.
In the experiments |Ha| is usually 16 or 32 and is referred to as the
cache size. Now, it is possible that more than |Ha| valid samples are
found for certain pixels. In that case, |Ha| directions are recorded
randomly and the remaining |H |− |Ha| are added to set Hb.

LHa
and LHb

from Equation (9) are estimates of the same integral.

Hence, we can discard all samples in Hb if LHa
is scaled accordingly.

I.e., we assume that on average the samples in Ha and Hb fetch the
same values. The final equation then becomes:

∆L(x,ωo)≈
(

1+
|Hb|
|Ha|

)
ρ

N
∑

ωi∈Ha

∆L(x,ωi) .

Consequently, we maximize the use of a limited number of traced
samples with a joint importance sampling of the material (the cosine
distribution) and the object. Still, our sampling can produce weak

Table 1. Performance of the Acquisition Phase. Timings measured using
a Google Tango Developer Kit. As in all examples, the point cloud size is
limited to 4M environment samples. Depth information is only provided
every 5th frame causing the steps marked by (·)∗.

Computation Step Time in ms

Get Color Image 6.3

Update ct + Apply ct 6.0 + 2.5

G-Buffer Splatting + Push-Pull 28.0 + 2.5

Get Sparse Depth Image 4.0∗

Find nearest Neighbors 25.8∗

Normal Estimation 18.8∗

Add Samples to Point Cloud 8.9∗

Remove Samples from Point Cloud 5.3∗

Apply c−1
t 2.5

Others (Visualization, ...) 13.8

(Averaged) Total Frame (73.4) 123.6∗

results if ∆L(x,ωi) varies a lot. This happens if only a few samples
hit very bright regions in the environment map behind the object or if
existing bright regions are missed completely.

8 RESULTS AND DISCUSSION

Here, we discuss the results of the different stages in the order of the
previous sections. To evaluate the presented approach, we investigated
all stages of the pipeline in real world scenarios and in synthetic scenes
acquired by a simulated depth sensing device. Hence, even the synthetic
experiments perform all steps of the pipeline. To provide insights on
the performance of the system, we show results created on a desktop
PC with an Intel i7-4790S and a NVIDIA GeForce GTX 980. The
mobile device used is a Google Tango Developer Kit powered by an
NVIDIA Tegra K1.

Environment Acquisition. As the synthetic scenes showed no issues,
we are focusing only on real data. Therefore, we mainly refer to the
accompanying video. Visual results can also be found in Figures 2 and 3.
The depth sensor provides between 3000 and 14000 new depth samples
every 5th frame in which the complete acquisition pipeline is executed.
During the other frames, we also provide feedback to the user by
showing the point cloud from the current camera position. The timings
provided in Table 1 show that the average frame time, including frames
with and without depth sensing, is 73.4 ms which equals about 13.5 fps.

While larger errors in the position of the samples are mainly caused
by the given tracking, we concentrate on issues with the measured
radiance. Using our compensation estimation, we are able to measure
the radiance in the scene relative to the first frame. The compensation
provides a stable color adjustment in consecutive frames but as known
from related algorithms like SLAM, there is a drift caused by error
accumulation over time. This can be observed when closing the loop of
360°. We observed increasing errors in scenes where the camera gets
over-saturated by bright light sources or under-saturated in very dark
areas causing noisy images. Another issue we identified is vignetting,
a radial reduction of brightness in the input. Our compensation is not
able to deal with local effects.

However, the strongest discrepancies are due to the Lambertian mate-
rial assumption as real surfaces usually show reflections and highlights.
As the effects did not appear in the synthetic experiments, we can as-
sume that there is no systematic error even though we are not able to
provide a real-world ground truth comparison.

G-Buffer Generation. Splatting the entire point cloud every frame is
one of the bottlenecks not addressed so far. Besides the computation
time (see Tables 1 and 2), there are also qualitative issues. Splatting
densely sampled areas can lead to z-fighting, which is acceptable for
colors but leads to temporal incoherence in the depth and normal chan-
nels. Applying bilateral Gaussian filters or down-sampling solved the

Table 2. Performance of the Rendering Phase. Timings are measured in
ms for the toy car in office scene. All three quality settings are shown in
Figure 1. Med is also used in the video.

Tango Tango Tango PC PC PC

Technique EM EM DIT DIT VCT DIT

Quality Settings low med med med med high

Get Color Image 5.8 7.2 6.2

Update ct 7.2 10.3 7.8 1.1 1.1 1.2

Apply ct 3.0 2.5 2.7 0.1 0.1 0.1

G-Buffer Splatting 34.7 30.5 30.5 8.1 8.1 8.3

G-Buffer Push-Pull 2.6 1.8 1.8 0.4 0.4 0.4

Render Virtual Object 18.7 149.6 195.0 5.1 8.6 133.2

Material Estimation 45.7 45.5 45.4 1.1 1.2 18.6

Diff. Background 22.5 32.5 61.7 0.8 2.0 16.9

Apply c−1
t 3.0 2.5 2.7 0.1 0.1 0.1

Others (Compose, ...) 4.4 4.5 4.1 0.2 0.4 0.5

Total Frame 147.6 288.5 357.9 16.9 21.9 179.0

Frame Rate [Hz] 6.7 3.4 2.8 59.1 45.6 5.6

problem in our experiments. We used 320×180 as G-Buffer resolution
in all experiments. Sparsely sampled areas, e.g., because of glossy sur-
faces, are smoothly filled by the push-pull steps. Large gaps however,
especially at the viewport boundaries can lead to serious artifacts. Even
in moderate cases the surface is bumpy. Figure 1 (left) shows bright
spots close to the papers that are not shadowed. This is an important
point for further research. Note that the proposed normal estimation
could also improve the G-Buffer but at a high cost.

Scene Representation. Splatting the point cloud into a distance impos-
tor follows the generation of the G-Buffer. The timings are similar and
scale linearly with the number of pixels. However, DIs are only updated
when the virtual object is moved and computations can be distributed
over multiple frames. Hence, temporal coherence can only become a
problem if the object is moved. If not mentioned otherwise, we use a
resolution of 6×2562 for DI or (scene) voxel volumes of size 2563.

Rendering of the Virtual Object. For performance evaluation, we
refer to Table 2. The scene with the toy car, visible in the video and
Figure 1, is rendered using different quality settings. Low and med use
16 samples for material estimation, differential rendering (with cache
size 8) and rendering of the virtual object. In high settings, the sample
counts are increased to 64 for material estimation as well as differential
rendering (with cache size 32) and to 128 for rendering the virtual
object. The toy car consists of 230k triangles and is voxelized into a
volume of size 323 for low and med but 128×96×96 for high. The low-
quality setting additionally omits self-shadow tests. With med settings,
we are checking for visibility only and for high we trace a secondary
bounce. Compared to visibility test only, the secondary bounce takes
approximately twice as long for rendering the virtual object. Note that
for the material estimation DIT is also used in EM cases, as EM cannot
be applied here. All measured timings are reasonable but show that the
mobile device is barely able to reach interactive frame rates even with
low quality.

Figure 9 shows the Buddha model in a synthetic test scene which
is used for qualitative comparison of the alternative techniques. We
evaluate a diffuse material as they reflect light from all directions and
tend to show more noise in the sampling. The results show, that self-
shadows appear significantly more plausible in all three approaches, but
also increase timings notably (see Table 3). Secondly, the simple EM
technique, which assumes distant light, illuminates the object uniformly
from top to bottom. In both other techniques, the origin of the ray or
cone is considered which leads to a more correct variation in brightness.
Table 3 contains the timings for different settings, where gray cells
correspond to the images in Figure 9.

ROHMER ET AL.: NATURAL ENVIRONMENT ILLUMINATION: COHERENT INTERACTIVE AUGMENTED REALITY FOR MOBILE . . . 2481

θ1
θ2
θ3
n

ray1

ray2

ray3

LEnv
LObj

dEnv2

dEnv3

dObj3

dObj2

x

Fig. 7. Estimating the difference in incoming radiance ∆L for different
directions based on the ray distance d. Three cases can be identified.

LObj and LEnv representing the average over the cone, the differential
radiance becomes:

∆L(x,ωi) = (1−α)(LObj −LEnv). (6)

To obtain LEnv we use the mipmap levels of the environment repre-
sentations. For VCT and EM we are following the known implemen-
tations in [3, 11] and [2] respectively. In case of DIT, the search for
the corrected central ray of the cone is performed on the most detailed
level of the DI. Only the final texture fetch to gather the radiance is
done in a coarser level, which depends on the size of the solid angle
and the distance to the surface.

For LObj we start and end cone marching at the boundaries of the
object’s bounding box and use a cone radius dependent step size as well
as radius dependent mipmap layers from the voxelization. Each voxel
contains the probability τ for a surface intersection. If the probability τ
is greater than zero, the object radiance is estimated using one of the
approaches explained in Sec. 6.4 (ray 2 case). The result is weighted
with the probability and the cone marching is proceeded. The following
steps must be weighted with the probability of continuation α which
is the product ∏s(1− τs) of all previous steps. These previous steps
can contain the occlusion between cone origin and object (ray 3 case).
Finally, when the cone left the object volume, α is the weight for the
environment as given in Equation (6).

6.6 Composition

During composition, the differential image and the virtual object are
added to the camera image in reference color space. Then, the inverse

color correction c−1
t (see Sec. 4) is applied to the augmented image to

transform it back into the input color space.

Figure 8 shows results and the capability of the compensation. While
the image in the top center shows the augmented original image, we
altered the input image by changing the brightness and introducing a
strong color shift. Applying the inverse operation to the augmented
image also transforms the colors of the virtual object which results in a
coherent integration of the new content.

7 ILLUMINATION ESTIMATION USING SAMPLING

The integral of a function f (x) can be estimated by a stochastic process
called Monte Carlo Integration [21]:

∫ b

a
f (x) ∂x ≈ 1

N

N

∑
i=1

f (xi)

p(xi)
, (7)

where p(xi) is the probability to produce sample xi. Any probability
density function (PDF) p can be used, but having a function which
scales with f yields the fastest convergence. Using such an improved
distribution function is called importance sampling. For rendering the
virtual object, Equation (3) is integrated on the GPU using the BRDF
as PDF, as described in [2].

For the material estimation, we need to solve Equation (5). Since
L(ω) is unknown we use the material-based cosine distribution p(ω) =
1/π cosθ . Here, θ is the angle between the surface normal of the

Fig. 8. Transforming back into input color space. Top center : original
input image augmented by a Buddha statue. Others: artificially altered
input images that have been transferred automatically into the reference
color space and eventually, after the augmentation, back into the input
space.

G-Buffer and the produced direction of ω. Applying Monte Carlo
integration gives:

ρ ≈ π
L(x)

1
N ∑

N
i=1

L(x,ωi) cosθ
1/π cosθ

=
L(x)

1
N ∑

N
i=1 L(x,ωi)

.

Applying the same scheme to Equation (4) while sampling the dif-
ferential values ∆L(x,ωi) directly (see Sec. 6.4) yields the estimation
for the differential rendering:

∆L(x,ωo)≈
1

N

N

∑
i=1

∆L(x,ωi)
ρ
π cosθ

1
π cosθ

=
ρ

N

N

∑
i=1

∆L(x,ωi) . (8)

Further, we can improve the sampling by incorporating the know-
ledge that ∆L(x,ωi) is zero when the ray misses the object (ray 1 case
in Figure 7), which is related to observations in [39]. Instead of just
skipping these rays, we try to keep to GPU utilization high by tracing
other more promising rays. This influences the probability which must
be corrected, as explained in the following.

First, we split the set of traced cones into two sets: a set F containing
all cones that miss the object (ray 1 case) and a set H holding the
remaining cones. Then, we divide H into disjoint sets Ha and Hb

dependent on ray cases 2 and 3. Accordingly, Equation (8) can be split
into three parts (omitting x for compactness):

∆L(ωo)≈
ρ

N

(

∑
ωi∈Ha

∆L(ωi)

︸ ︷︷ ︸

LHa

+ ∑
ωi∈Hb

∆L(ωi)

︸ ︷︷ ︸

LHb

+ ∑
ωi∈F

∆L(ωi)

︸ ︷︷ ︸

LF =0

)

. (9)

By using early intersection tests with the virtual object’s bounding
box, we can reject all samples in F before starting expensive tracing.
Consequently, the number of samples in H is decreasing with the
distance to the virtual object. To keep the GPU utilized, we increase N
and create a large set of N directions, test them against the bounding
box and record them for later tracing in a local array of size |Ha|< N.
In the experiments |Ha| is usually 16 or 32 and is referred to as the
cache size. Now, it is possible that more than |Ha| valid samples are
found for certain pixels. In that case, |Ha| directions are recorded
randomly and the remaining |H |− |Ha| are added to set Hb.

LHa
and LHb

from Equation (9) are estimates of the same integral.

Hence, we can discard all samples in Hb if LHa
is scaled accordingly.

I.e., we assume that on average the samples in Ha and Hb fetch the
same values. The final equation then becomes:

∆L(x,ωo)≈
(

1+
|Hb|
|Ha|

)
ρ

N
∑

ωi∈Ha

∆L(x,ωi) .

Consequently, we maximize the use of a limited number of traced
samples with a joint importance sampling of the material (the cosine
distribution) and the object. Still, our sampling can produce weak

Table 1. Performance of the Acquisition Phase. Timings measured using
a Google Tango Developer Kit. As in all examples, the point cloud size is
limited to 4M environment samples. Depth information is only provided
every 5th frame causing the steps marked by (·)∗.

Computation Step Time in ms

Get Color Image 6.3

Update ct + Apply ct 6.0 + 2.5

G-Buffer Splatting + Push-Pull 28.0 + 2.5

Get Sparse Depth Image 4.0∗

Find nearest Neighbors 25.8∗

Normal Estimation 18.8∗

Add Samples to Point Cloud 8.9∗

Remove Samples from Point Cloud 5.3∗

Apply c−1
t 2.5

Others (Visualization, ...) 13.8

(Averaged) Total Frame (73.4) 123.6∗

results if ∆L(x,ωi) varies a lot. This happens if only a few samples
hit very bright regions in the environment map behind the object or if
existing bright regions are missed completely.

8 RESULTS AND DISCUSSION

Here, we discuss the results of the different stages in the order of the
previous sections. To evaluate the presented approach, we investigated
all stages of the pipeline in real world scenarios and in synthetic scenes
acquired by a simulated depth sensing device. Hence, even the synthetic
experiments perform all steps of the pipeline. To provide insights on
the performance of the system, we show results created on a desktop
PC with an Intel i7-4790S and a NVIDIA GeForce GTX 980. The
mobile device used is a Google Tango Developer Kit powered by an
NVIDIA Tegra K1.

Environment Acquisition. As the synthetic scenes showed no issues,
we are focusing only on real data. Therefore, we mainly refer to the
accompanying video. Visual results can also be found in Figures 2 and 3.
The depth sensor provides between 3000 and 14000 new depth samples
every 5th frame in which the complete acquisition pipeline is executed.
During the other frames, we also provide feedback to the user by
showing the point cloud from the current camera position. The timings
provided in Table 1 show that the average frame time, including frames
with and without depth sensing, is 73.4 ms which equals about 13.5 fps.

While larger errors in the position of the samples are mainly caused
by the given tracking, we concentrate on issues with the measured
radiance. Using our compensation estimation, we are able to measure
the radiance in the scene relative to the first frame. The compensation
provides a stable color adjustment in consecutive frames but as known
from related algorithms like SLAM, there is a drift caused by error
accumulation over time. This can be observed when closing the loop of
360°. We observed increasing errors in scenes where the camera gets
over-saturated by bright light sources or under-saturated in very dark
areas causing noisy images. Another issue we identified is vignetting,
a radial reduction of brightness in the input. Our compensation is not
able to deal with local effects.

However, the strongest discrepancies are due to the Lambertian mate-
rial assumption as real surfaces usually show reflections and highlights.
As the effects did not appear in the synthetic experiments, we can as-
sume that there is no systematic error even though we are not able to
provide a real-world ground truth comparison.

G-Buffer Generation. Splatting the entire point cloud every frame is
one of the bottlenecks not addressed so far. Besides the computation
time (see Tables 1 and 2), there are also qualitative issues. Splatting
densely sampled areas can lead to z-fighting, which is acceptable for
colors but leads to temporal incoherence in the depth and normal chan-
nels. Applying bilateral Gaussian filters or down-sampling solved the

Table 2. Performance of the Rendering Phase. Timings are measured in
ms for the toy car in office scene. All three quality settings are shown in
Figure 1. Med is also used in the video.

Tango Tango Tango PC PC PC

Technique EM EM DIT DIT VCT DIT

Quality Settings low med med med med high

Get Color Image 5.8 7.2 6.2

Update ct 7.2 10.3 7.8 1.1 1.1 1.2

Apply ct 3.0 2.5 2.7 0.1 0.1 0.1

G-Buffer Splatting 34.7 30.5 30.5 8.1 8.1 8.3

G-Buffer Push-Pull 2.6 1.8 1.8 0.4 0.4 0.4

Render Virtual Object 18.7 149.6 195.0 5.1 8.6 133.2

Material Estimation 45.7 45.5 45.4 1.1 1.2 18.6

Diff. Background 22.5 32.5 61.7 0.8 2.0 16.9

Apply c−1
t 3.0 2.5 2.7 0.1 0.1 0.1

Others (Compose, ...) 4.4 4.5 4.1 0.2 0.4 0.5

Total Frame 147.6 288.5 357.9 16.9 21.9 179.0

Frame Rate [Hz] 6.7 3.4 2.8 59.1 45.6 5.6

problem in our experiments. We used 320×180 as G-Buffer resolution
in all experiments. Sparsely sampled areas, e.g., because of glossy sur-
faces, are smoothly filled by the push-pull steps. Large gaps however,
especially at the viewport boundaries can lead to serious artifacts. Even
in moderate cases the surface is bumpy. Figure 1 (left) shows bright
spots close to the papers that are not shadowed. This is an important
point for further research. Note that the proposed normal estimation
could also improve the G-Buffer but at a high cost.

Scene Representation. Splatting the point cloud into a distance impos-
tor follows the generation of the G-Buffer. The timings are similar and
scale linearly with the number of pixels. However, DIs are only updated
when the virtual object is moved and computations can be distributed
over multiple frames. Hence, temporal coherence can only become a
problem if the object is moved. If not mentioned otherwise, we use a
resolution of 6×2562 for DI or (scene) voxel volumes of size 2563.

Rendering of the Virtual Object. For performance evaluation, we
refer to Table 2. The scene with the toy car, visible in the video and
Figure 1, is rendered using different quality settings. Low and med use
16 samples for material estimation, differential rendering (with cache
size 8) and rendering of the virtual object. In high settings, the sample
counts are increased to 64 for material estimation as well as differential
rendering (with cache size 32) and to 128 for rendering the virtual
object. The toy car consists of 230k triangles and is voxelized into a
volume of size 323 for low and med but 128×96×96 for high. The low-
quality setting additionally omits self-shadow tests. With med settings,
we are checking for visibility only and for high we trace a secondary
bounce. Compared to visibility test only, the secondary bounce takes
approximately twice as long for rendering the virtual object. Note that
for the material estimation DIT is also used in EM cases, as EM cannot
be applied here. All measured timings are reasonable but show that the
mobile device is barely able to reach interactive frame rates even with
low quality.

Figure 9 shows the Buddha model in a synthetic test scene which
is used for qualitative comparison of the alternative techniques. We
evaluate a diffuse material as they reflect light from all directions and
tend to show more noise in the sampling. The results show, that self-
shadows appear significantly more plausible in all three approaches, but
also increase timings notably (see Table 3). Secondly, the simple EM
technique, which assumes distant light, illuminates the object uniformly
from top to bottom. In both other techniques, the origin of the ray or
cone is considered which leads to a more correct variation in brightness.
Table 3 contains the timings for different settings, where gray cells
correspond to the images in Figure 9.

2482 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

Fig. 9. Illumination Variants for the Virtual Object. Groups from left to right: Environment Mapping, Impostor Tracing, VCT and the reference. Each
group shows the results without and with self-occlusion test for the object illumination. Timings can be found in Table 3.

Table 3. Environment Query Timings. Accumulated time in ms for Rende-
ring Virtual Object, Material Estimation and Differential Background (with
cache size 32) on PC (also see Figure 9).

Sample Count (N) 16 32 64

EM (no visibility test) 0.27 0.48 0.99

EM 9.88 20.49 42.12

DIT (no visibility test) 3.57 6.91 13.82

DIT 12.81 25.81 51.86

VCT (no visibility test) 6.43 12.14 27.01

VCT 18.97 37.72 79.24

Material Estimation. We assumed a Lambertian environment which
allows to integrate the incident light over the upper hemisphere of the
surface. Since this assumption is not valid in real world scenarios we
are not able to achieve perfect results. Another problem is caused by an
incomplete acquisition of the environment. Windows or bright sources
of light cannot be measured by the Tango device. Therefore, we added
a workaround to add guessed environment samples. Triggered by a
manual action of the user (see the accompanying video), the current
camera image is projected along the view direction and samples are
created at the distance estimated by the hole-filled depth buffer. These
samples are excluded from the compensation estimation but are used
for rendering and material estimation. Since these samples are often
created in saturated areas of the camera image, the real – often much
brighter – radiance is underestimated. Hence, the material estimation
will be overestimated and shadows computed by differential rendering
appear different.

Figure 10 shows the entire pipeline, including the estimated material
parameters as well as the resulting difference image. Besides the color
shift on the right side of image, the material still contains some shadows
but removed the shading to a large extent. Ideally, the material image
should not show any lighting or shading.

Differential Background Rendering. To evaluate the relighting of
the background, we measured different timings with varying parameters
in the synthetic scene (see Table 4 and Figure 11). The images show an
equal time comparison of EM, DIT and VCT. The resolution for the
differential image is reduced by a factor 2 to 640×360. One bounce
of indirect light is computed in case the virtual object was hit.

Obviously, none of the techniques can reproduce the reference so-
lution. VTC and DIT at least provide contact shadows, whereas EM
yields a uniform directional shadow because of the distant light assump-
tion. Even though this is incorrect, the resulting shadow is smooth and
could be used as fast approximation. Increasing the number of cones
and reducing their radius generally improves the visual appearance.

Because of the diffuse assumption and the low number of cones,
the probability to hit a light source is low and the cone radius must be
large to properly sample the entire hemisphere. Hence, we are not able
to reproduce high frequency shadow details. Compared to the ground
truth, the direction and the coarse shape are correct though. In other
rendering engines, VCT is used for indirect light only. Therefore, 5 to
8 samples are often considered as sufficient. We also handle the direct

Table 4. Computing Virtual Influence. Timings in ms for different number
of samples and cache sizes to estimate the differential rendering integral
using EM, DIT and VCT on PC (also see Figure 11).

Sample Count (N) 8 16 32 64 128

EM (Cache 8) 2.15 2.62 3.33 3.85 4.46

EM (Cache 16) 2.16 3.10 4.90 6.44 7.36

EM (Cache 32) 2.19 3.11 5.88 9.51 12.48

DIT (Cache 8) 2.25 3.27 4.16 4.67 5.51

DIT (Cache 16) 2.74 3.86 6.05 7.87 9.86

DIT (Cache 32) 2.76 3.85 7.14 11.56 15.50

VCT (Cache 8) 8.37 3.98 5.10 5.73 6.49

VCT (Cache 16) 8.34 4.71 7.56 9.92 11.10

VCT (Cache 32) 8.45 4.71 8.77 14.57 19.23

illumination. In the future, hybrid solutions with extracted light sources
can be desirable. However, extracting them from the point cloud is not
straightforward.

Table 4 also shows the impact of the presented caching approach that
allows to select sample directions not only based on the BRDF but also
on the direction of the virtual object (see Sec. 7). The measurements
confirm an increase of the utilization and thereby a reduction of cost
per sample. The costs increase as long as the cache contains less than
|Ha| samples (see Equation (9)). Afterwards, the costs per sample
equal the cost of the box test. For temporal coherence, we refer to
the accompanying video showing the moving Buddha and DIT with
N = 64 and a cache size of 32.

Interreflections between the real world and inserted virtual objects
are another important feature of coherent AR rendering. By computing
a secondary bounce with any of the three techniques, we are able to
produce color-bleeding, e.g., on the wall in Figure 9.

Composition. For visual results and an impression of the visual
behavior we refer the reader to the accompanying videos. During the
acquisition of the environment the colors are matched frame by frame.
In the sequence containing the toy car, a visually plausible, automatic
adaptation to the camera exposure can be observed (also see Figure 1 tc
and bc). Figure 8 shows that the approach is also robust against different
color transformations on the input. Therefore, our compensation is of
great use in many AR scenarios.

However, if the input image is already saturated, problems will occur.
In this case the transformation leads to undefined colors in the corrected
image, but the material estimation relies on them. Figure 10 shows
the effect on the resulting reflectance coefficients. Since the resulting
values are stored in HDR, this is not visible to the user as long as these
areas are not in the shadow of an object.

Timings for updating ct can vary strongly (see Table 1 and 2). This
is because the timing contains a read-back from the GPU to disable
acquisition in case of failures (shared code for rendering). Setting up
and solving the system on the GPU itself requires about 2.6 ms on the
Tango and only depends on the G-Buffer resolution.

Fig. 10. Compensated Differential Rendering. left to right : Camera image in unknown input color space, camera image transformed in HDR reference
space, estimated reflectance coefficients (contain errors because of saturation in the input image), differential image containing the influence of the
virtual object (absolute value), augmented image in HDR reference space, augmented image in unknown input color space (model courtesy of Van
Quang Ho).

Fig. 11. Differential Shadows achieved within 10 ms of differential back-
ground computation: EM (top left), DIT (bottom left), VCT (top right) and
ground truth (bottom right). Table 4 contains the corresponding sample
counts, cache sizes and timings.

9 LIMITATIONS AND FUTURE WORK

To be able to demonstrate a coherent AR rendering starting from the
acquisition using a single mobile device, we need to make a set of
assumptions that are not necessarily true in real world scenarios.

The compensation estimation relies on a linear model to map input
images into a given reference color space. In our experiments, this
approach was sufficiently robust even in difficult situations, e.g., when
turning the camera directly to the light. However, for other devices or
different applications, a linear compensation is not adequate, e.g., if the
transformation is not constant over the entire image. Further, we are
limited by the dynamic range of the Tango. When pointed to a bright
light source, the exposure is reduced to not over-saturate. When this
turns the rest of image too dark or even black, the matching must fail.

The most restrictive assumption is the Lambertian environment
BRDF. This affects the acquisition process, where the captured en-
vironment is used as input to the color estimation in consecutive steps.
Reflections on non-diffuse surfaces introduce errors that cannot be
handled by the system at the moment. Also, the material estimation re-
quired for differential rendering depends on this assumption. Including
additional information about the direction of measurement could help
to overcome this problem by measuring more complex material proper-
ties. Further, the sampling quality will benefit from smaller cones due
to more focused reflections.

Although we are able to remove samples from the point cloud, the
environment is assumed to be static after completing the acquisition.
During the augmentation, the acquisition pipeline could update the
environment model, but this only works for the camera’s small field
of view. By simply turning a light source on or off, the entire recon-
struction becomes outdated. Measuring the illumination with additional
hardware or inverse rendering techniques could be used here.

As noticed earlier, the reconstructed surface can be very bumpy. This
can be addressed by taking the previous acquired scene into account
while processing new samples, e.g., by applying ICP.

The presented rendering techniques allow different levels of quality.
However, the tablet used in the experiments achieves barely interactive
frames rate, even with low settings. There is a lot of potential in

optimizing the performance, as we aimed for flexibility instead of
polishing a single technique. However, different bottlenecks can be
addressed to achieve higher frame rates. Processing and optimizing
the acquired scene, by reducing samples in dense regions, creating
hierarchical structures that allow culling and fast traversal, estimating
reflectance coefficients offline or creating a low poly triangle mesh for
instance.

At this point, only one virtual object can be inserted into the image.
Adding multiple objects with multiple voxel volumes also multiplies the
computation effort. Using a hierarchy of boxes that supports importance
sampling is a challenging task for the future.

10 CONCLUSION

We demonstrated that photorealistic AR is made possible by a single
mobile device. First, we presented a linear estimation of the unknown
color adjustments applied by the mobile camera and the driver. This
allows to fuse the LDR color information of consecutive frames into
HDR samples. These are stored in a point cloud along with fitted
surface normals.

We applied several-sampling based techniques for high quality rende-
rings based on the acquired data. While aiming for interactive augmen-
tations on mobile devices, we presented a framework that scales with
the performance of the available platform up to high quality renderings,
as shown in Figure 1. Note that progressive rendering to produce high
quality screenshots, e.g., for sharing, is a straight forward extension.

Eventually, the composed image is transformed back into input
color space. The result is an augmented image containing a virtual
object, coherently illuminated by the environment. The virtual and real
objects are integrated in terms of perspective, occlusion, shading and
the original color transformation of the camera, including exposure and
white balance.

Further, it is also possible to use this technique with different devices
involved. So, the color compensation is not limited to be used with
depth sensing devices. As an example, the background of Figure 1 (left)
was captured with a DSRL camera.

Thinking of a high-quality scan of an area of interest – maybe a
historic sight – a common smartphone can display augmentations based
on that scan. Therefore, extrinsic camera parameters can be estimated
from visual features and the presented estimation method is used to
map the camera image into the color space of the high-quality scan.
After applying the augmentations, the inverse compensation is used to
transform back into the unknown color space that was optimized for
displaying the real content.

ACKNOWLEDGMENTS

We would like to thank the Stanford 3D Scanning Repository for the
Stanford Bunny and the Buddha model. We also would like to thank
VILAC for the Toy Car, Maciek Ptaszynski for the Cafe Racer and Van
Quang Ho for the Low Lounger model. Additionally, we would like to
thank the anonymous reviewers for valuable comments and suggestions.
This work is partially supported by the German Research Foundation
(DFG), Grant No. GR 3833/3-1.

REFERENCES

[1] E. H. Adelson and J. R. Bergen. The Plenoptic Function and the Elements

of Early Vision. In Computational Models of Visual Processing, pp. 3–20.

Massachusetts Institute of Technology, 1991.

ROHMER ET AL.: NATURAL ENVIRONMENT ILLUMINATION: COHERENT INTERACTIVE AUGMENTED REALITY FOR MOBILE . . . 2483

Fig. 9. Illumination Variants for the Virtual Object. Groups from left to right: Environment Mapping, Impostor Tracing, VCT and the reference. Each
group shows the results without and with self-occlusion test for the object illumination. Timings can be found in Table 3.

Table 3. Environment Query Timings. Accumulated time in ms for Rende-
ring Virtual Object, Material Estimation and Differential Background (with
cache size 32) on PC (also see Figure 9).

Sample Count (N) 16 32 64

EM (no visibility test) 0.27 0.48 0.99

EM 9.88 20.49 42.12

DIT (no visibility test) 3.57 6.91 13.82

DIT 12.81 25.81 51.86

VCT (no visibility test) 6.43 12.14 27.01

VCT 18.97 37.72 79.24

Material Estimation. We assumed a Lambertian environment which
allows to integrate the incident light over the upper hemisphere of the
surface. Since this assumption is not valid in real world scenarios we
are not able to achieve perfect results. Another problem is caused by an
incomplete acquisition of the environment. Windows or bright sources
of light cannot be measured by the Tango device. Therefore, we added
a workaround to add guessed environment samples. Triggered by a
manual action of the user (see the accompanying video), the current
camera image is projected along the view direction and samples are
created at the distance estimated by the hole-filled depth buffer. These
samples are excluded from the compensation estimation but are used
for rendering and material estimation. Since these samples are often
created in saturated areas of the camera image, the real – often much
brighter – radiance is underestimated. Hence, the material estimation
will be overestimated and shadows computed by differential rendering
appear different.

Figure 10 shows the entire pipeline, including the estimated material
parameters as well as the resulting difference image. Besides the color
shift on the right side of image, the material still contains some shadows
but removed the shading to a large extent. Ideally, the material image
should not show any lighting or shading.

Differential Background Rendering. To evaluate the relighting of
the background, we measured different timings with varying parameters
in the synthetic scene (see Table 4 and Figure 11). The images show an
equal time comparison of EM, DIT and VCT. The resolution for the
differential image is reduced by a factor 2 to 640×360. One bounce
of indirect light is computed in case the virtual object was hit.

Obviously, none of the techniques can reproduce the reference so-
lution. VTC and DIT at least provide contact shadows, whereas EM
yields a uniform directional shadow because of the distant light assump-
tion. Even though this is incorrect, the resulting shadow is smooth and
could be used as fast approximation. Increasing the number of cones
and reducing their radius generally improves the visual appearance.

Because of the diffuse assumption and the low number of cones,
the probability to hit a light source is low and the cone radius must be
large to properly sample the entire hemisphere. Hence, we are not able
to reproduce high frequency shadow details. Compared to the ground
truth, the direction and the coarse shape are correct though. In other
rendering engines, VCT is used for indirect light only. Therefore, 5 to
8 samples are often considered as sufficient. We also handle the direct

Table 4. Computing Virtual Influence. Timings in ms for different number
of samples and cache sizes to estimate the differential rendering integral
using EM, DIT and VCT on PC (also see Figure 11).

Sample Count (N) 8 16 32 64 128

EM (Cache 8) 2.15 2.62 3.33 3.85 4.46

EM (Cache 16) 2.16 3.10 4.90 6.44 7.36

EM (Cache 32) 2.19 3.11 5.88 9.51 12.48

DIT (Cache 8) 2.25 3.27 4.16 4.67 5.51

DIT (Cache 16) 2.74 3.86 6.05 7.87 9.86

DIT (Cache 32) 2.76 3.85 7.14 11.56 15.50

VCT (Cache 8) 8.37 3.98 5.10 5.73 6.49

VCT (Cache 16) 8.34 4.71 7.56 9.92 11.10

VCT (Cache 32) 8.45 4.71 8.77 14.57 19.23

illumination. In the future, hybrid solutions with extracted light sources
can be desirable. However, extracting them from the point cloud is not
straightforward.

Table 4 also shows the impact of the presented caching approach that
allows to select sample directions not only based on the BRDF but also
on the direction of the virtual object (see Sec. 7). The measurements
confirm an increase of the utilization and thereby a reduction of cost
per sample. The costs increase as long as the cache contains less than
|Ha| samples (see Equation (9)). Afterwards, the costs per sample
equal the cost of the box test. For temporal coherence, we refer to
the accompanying video showing the moving Buddha and DIT with
N = 64 and a cache size of 32.

Interreflections between the real world and inserted virtual objects
are another important feature of coherent AR rendering. By computing
a secondary bounce with any of the three techniques, we are able to
produce color-bleeding, e.g., on the wall in Figure 9.

Composition. For visual results and an impression of the visual
behavior we refer the reader to the accompanying videos. During the
acquisition of the environment the colors are matched frame by frame.
In the sequence containing the toy car, a visually plausible, automatic
adaptation to the camera exposure can be observed (also see Figure 1 tc
and bc). Figure 8 shows that the approach is also robust against different
color transformations on the input. Therefore, our compensation is of
great use in many AR scenarios.

However, if the input image is already saturated, problems will occur.
In this case the transformation leads to undefined colors in the corrected
image, but the material estimation relies on them. Figure 10 shows
the effect on the resulting reflectance coefficients. Since the resulting
values are stored in HDR, this is not visible to the user as long as these
areas are not in the shadow of an object.

Timings for updating ct can vary strongly (see Table 1 and 2). This
is because the timing contains a read-back from the GPU to disable
acquisition in case of failures (shared code for rendering). Setting up
and solving the system on the GPU itself requires about 2.6 ms on the
Tango and only depends on the G-Buffer resolution.

Fig. 10. Compensated Differential Rendering. left to right : Camera image in unknown input color space, camera image transformed in HDR reference
space, estimated reflectance coefficients (contain errors because of saturation in the input image), differential image containing the influence of the
virtual object (absolute value), augmented image in HDR reference space, augmented image in unknown input color space (model courtesy of Van
Quang Ho).

Fig. 11. Differential Shadows achieved within 10 ms of differential back-
ground computation: EM (top left), DIT (bottom left), VCT (top right) and
ground truth (bottom right). Table 4 contains the corresponding sample
counts, cache sizes and timings.

9 LIMITATIONS AND FUTURE WORK

To be able to demonstrate a coherent AR rendering starting from the
acquisition using a single mobile device, we need to make a set of
assumptions that are not necessarily true in real world scenarios.

The compensation estimation relies on a linear model to map input
images into a given reference color space. In our experiments, this
approach was sufficiently robust even in difficult situations, e.g., when
turning the camera directly to the light. However, for other devices or
different applications, a linear compensation is not adequate, e.g., if the
transformation is not constant over the entire image. Further, we are
limited by the dynamic range of the Tango. When pointed to a bright
light source, the exposure is reduced to not over-saturate. When this
turns the rest of image too dark or even black, the matching must fail.

The most restrictive assumption is the Lambertian environment
BRDF. This affects the acquisition process, where the captured en-
vironment is used as input to the color estimation in consecutive steps.
Reflections on non-diffuse surfaces introduce errors that cannot be
handled by the system at the moment. Also, the material estimation re-
quired for differential rendering depends on this assumption. Including
additional information about the direction of measurement could help
to overcome this problem by measuring more complex material proper-
ties. Further, the sampling quality will benefit from smaller cones due
to more focused reflections.

Although we are able to remove samples from the point cloud, the
environment is assumed to be static after completing the acquisition.
During the augmentation, the acquisition pipeline could update the
environment model, but this only works for the camera’s small field
of view. By simply turning a light source on or off, the entire recon-
struction becomes outdated. Measuring the illumination with additional
hardware or inverse rendering techniques could be used here.

As noticed earlier, the reconstructed surface can be very bumpy. This
can be addressed by taking the previous acquired scene into account
while processing new samples, e.g., by applying ICP.

The presented rendering techniques allow different levels of quality.
However, the tablet used in the experiments achieves barely interactive
frames rate, even with low settings. There is a lot of potential in

optimizing the performance, as we aimed for flexibility instead of
polishing a single technique. However, different bottlenecks can be
addressed to achieve higher frame rates. Processing and optimizing
the acquired scene, by reducing samples in dense regions, creating
hierarchical structures that allow culling and fast traversal, estimating
reflectance coefficients offline or creating a low poly triangle mesh for
instance.

At this point, only one virtual object can be inserted into the image.
Adding multiple objects with multiple voxel volumes also multiplies the
computation effort. Using a hierarchy of boxes that supports importance
sampling is a challenging task for the future.

10 CONCLUSION

We demonstrated that photorealistic AR is made possible by a single
mobile device. First, we presented a linear estimation of the unknown
color adjustments applied by the mobile camera and the driver. This
allows to fuse the LDR color information of consecutive frames into
HDR samples. These are stored in a point cloud along with fitted
surface normals.

We applied several-sampling based techniques for high quality rende-
rings based on the acquired data. While aiming for interactive augmen-
tations on mobile devices, we presented a framework that scales with
the performance of the available platform up to high quality renderings,
as shown in Figure 1. Note that progressive rendering to produce high
quality screenshots, e.g., for sharing, is a straight forward extension.

Eventually, the composed image is transformed back into input
color space. The result is an augmented image containing a virtual
object, coherently illuminated by the environment. The virtual and real
objects are integrated in terms of perspective, occlusion, shading and
the original color transformation of the camera, including exposure and
white balance.

Further, it is also possible to use this technique with different devices
involved. So, the color compensation is not limited to be used with
depth sensing devices. As an example, the background of Figure 1 (left)
was captured with a DSRL camera.

Thinking of a high-quality scan of an area of interest – maybe a
historic sight – a common smartphone can display augmentations based
on that scan. Therefore, extrinsic camera parameters can be estimated
from visual features and the presented estimation method is used to
map the camera image into the color space of the high-quality scan.
After applying the augmentations, the inverse compensation is used to
transform back into the unknown color space that was optimized for
displaying the real content.

ACKNOWLEDGMENTS

We would like to thank the Stanford 3D Scanning Repository for the
Stanford Bunny and the Buddha model. We also would like to thank
VILAC for the Toy Car, Maciek Ptaszynski for the Cafe Racer and Van
Quang Ho for the Low Lounger model. Additionally, we would like to
thank the anonymous reviewers for valuable comments and suggestions.
This work is partially supported by the German Research Foundation
(DFG), Grant No. GR 3833/3-1.

REFERENCES

[1] E. H. Adelson and J. R. Bergen. The Plenoptic Function and the Elements

of Early Vision. In Computational Models of Visual Processing, pp. 3–20.

Massachusetts Institute of Technology, 1991.

2484 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 11, NOVEMBER 2017

[2] M. Colbert and J. Křivánek. GPU-based importance sampling. GPU Gems

3, pp. 459–476, 2007.

[3] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann. Interactive

Indirect Illumination Using Voxel Cone Tracing. Computer Graphics

Forum (Proc. Pacific Graphics), 30(7):1921–1930, 2011.

[4] C. Dachsbacher and M. Stamminger. Reflective Shadow Maps. In Proc.

Symposium on Interactive 3D Graphics and Games (I3D), pp. 203–231,

2005.

[5] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. BundleFu-

sion: Real-Time Globally Consistent 3D Reconstruction Using On-the-Fly

Surface Reintegration. ACM Transactions on Graphics (TOG), 36(3):24:1–

24:18, 2017.

[6] P. Debevec. Rendering Synthetic Objects into Real Scenes: Bridging

Traditional and Image-based Graphics with Global Illumination and High

Dynamic Range Photography. In Proceedings of SIGGRAPH ’98, pp.

189–198, 1998.

[7] P. Debevec and J. Malik. Recovering High Dynamic Range Radiance

Maps from Photographs. In Proceedings of SIGGRAPH ’97, pp. 369–378,

1997.

[8] E. Eisemann and X. Décoret. Single-pass GPU Solid Voxelization for

Real-time Applications. In Proc. Graphics Interface (GI), pp. 73–80,

2008.

[9] A. Fournier, A. S. Gunavan, and C. Romanzin. Common Illumination bet-

ween Real and Computer Generated Scenes. In Proc. Graphics Interface

(GI), pp. 254–262, 1993.

[10] T. A. Franke. Delta Light Propagation Volumes for Mixed Reality. In

Proc. IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), pp. 125–132, 2013.

[11] T. A. Franke. Delta Voxel Cone Tracing. In Proc. IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), pp. 39–44, 2014.

[12] S. Gibson, J. Cook, T. Howard, and R. Hubbold. Rapid Shadow Generation

in Real-world Lighting Environments. In Proc. Eurographics Symposium

on Rendering (EGSR), pp. 219–229, 2003.

[13] D. B. Goldman. Vignette and Exposure Calibration and Compensation.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

32(12):2276–2288, 2010.

[14] T. Grosch. PanoAR: Interactive Augmentation of Omni-directional Images

with Consistent Lighting. In Proc. Computer Vision / Computer Graphics

Collaboration Techniques and Applications (Mirage), pp. 25–34, 2005.

[15] T. Grosch, T. Eble, and S. Müller. Consistent Interactive Augmentation

of Live Camera Images with Correct Near-field Illumination. In Proc.

ACM Symposium on Virtual Reality Software and Technology (VRST), pp.

125–132, 2007.

[16] L. Gruber, T. Richter-Trummer, and D. Schmalstieg. Real-time Photome-

tric Registration from Arbitrary Geometry. In Proc. IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), pp. 119–128, 2012.

[17] L. Gruber, J. Ventura, and D. Schmalstieg. Image-space illumination for

augmented reality in dynamic environments. In Proc. IEEE Virtual Reality

(VR), pp. 127–134, 2015.

[18] M. Grundmann, C. McClanahan, S. B. Kang, and I. Essa. Post-processing

Approach for Radiometric Self-Calibration of Video. In IEEE Internatio-

nal Conference on Computational Photography (ICCP), pp. 1–9, 2013.

[19] T. Hachisuka and H. W. Jensen. Parallel Progressive Photon Mapping on

GPUs. In ACM SIGGRAPH Asia Sketches, p. 54, 2010.

[20] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,

J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Ki-

nectFusion: Real-time 3D Reconstruction and Interaction Using a Moving

Depth Camera. In Proc. ACM Symposium on User Interface Software and

Technology, pp. 559–568, 2011.

[21] J. T. Kajiya. The Rendering Equation. Computer Graphics (Proc. SIG-

GRAPH), 20(4):143–150, 1986.

[22] P. Kán. Interactive HDR Environment Map Capturing on Mobile Devices.

In Proc. Eurographics Short Papers, pp. 29–32, 2015.

[23] P. Kán and H. Kaufmann. Differential Irradiance Caching for fast high-

quality light transport between virtual and real worlds. In Proc. IEEE

International Symposium on Mixed and Augmented Reality (ISMAR), pp.

133–141, 2013.

[24] P. Kán and H. Kaufmann. Differential Progressive Path Tracing for High-

Quality Previsualization and Relighting in Augmented Reality. In Proc.

IEEE International Symposium on Mixed and Augmented Reality (ISMAR),

pp. 133–141, 2013.

[25] L. Kavan, P.-P. Sloan, and C. O’Sullivan. Fast and Efficient Skinning of

Animated Meshes. Computer Graphics Forum (CGF), 29(2):327–336,

2010.

[26] S. J. Kim and M. Pollefeys. Robust Radiometric Calibration and Vig-

netting Correction. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 30(4):562–576, 2008.

[27] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wimmer.

Differential Instant Radiosity for Mixed Reality. In Proc. IEEE Internatio-

nal Conference on Computer Vision (ICCV), pp. 99–107, 2010.

[28] M. Knecht, C. Traxler, W. Purgathofer, and M. Wimmer. Adaptive Camera-

Based Color Mapping For Mixed-Reality Applications. In Proc. IEEE

International Symposium on Mixed and Augmented Reality (ISMAR), pp.

165–168, 2011.

[29] J. Kronander, F. Banterle, A. Gardner, E. Miandji, and J. Unger. Photorea-

listic rendering of mixed reality scenes. Computer Graphics Forum (Proc.

Eurographics), 34(2):643–665, 2015.

[30] P. Lensing and W. Broll. Instant indirect illumination for dynamic mixed

reality scenes. In Proc. IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pp. 109–118, 2012.

[31] R. Marroquim, M. Kraus, and P. R. Cavalcanti. Efficient Point-Based

Rendering Using Image Reconstruction. In Proc. Symposium on Point-

Based Graphics, pp. 101–108, 2007.

[32] M. Meilland, C. Barat, and A. Comport. 3D High Dynamic Range dense

visual SLAM and its application to real-time object re-lighting. In Proc.

IEEE International Symposium on Mixed and Augmented Reality (ISMAR),

pp. 143–152, 2013.

[33] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D

Reconstruction at Scale using Voxel Hashing. ACM Transactions on

Graphics (Proc. SIGGRAPH Asia), 32(6):169:1–169:11, 2013.

[34] D. Nowrouzezahrai, S. Geiger, K. Mitchell, R. Sumner, W. Jarosz, and

M. Gross. Light Factorization for Mixed-Frequency Shadows in Aug-

mented Reality. In Proc. IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pp. 173–179, 2011.

[35] G. Patow and X. Pueyo. A Survey of Inverse Rendering Problems. Com-

puter Graphics Forum (CGF), 22(4):663–687, 2003.

[36] T. Richter-Trummer, D. Kalkofen, J. Park, and D. Schmalstieg. Instant

Mixed Reality Lighting from Casual Scanning. In IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), pp. 27–36, 2016.

[37] K. Rohmer, W. Büschel, R. Dachselt, and T. Grosch. Interactive Near-Field

Illumination for Photorealistic Augmented Reality on Mobile Devices. In

Proc. IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), pp. 29–38, 2014.

[38] K. Rohmer, W. Büschel, R. Dachselt, and T. Grosch. Interactive Near-Field

Illumination for Photorealistic Augmented Reality with Varying Materials

on Mobile Devices. IEEE Transactions on Visualization and Computer

Graphics (TVCG), 21(12):1349–1362, 2015.

[39] K. Rohmer and T. Grosch. Tiled Frustum Culling for Differential Ren-

dering on Mobile Devices. In Proc. IEEE International Symposium on

Mixed and Augmented Reality (ISMAR), pp. 37–42, 2015.

[40] T. Saito and T. Takahashi. Comprehensible Rendering of 3-D Shapes.

Computer Graphics (Proc. SIGGRAPH), 24(4):197–206, 1990.

[41] D. Schmalstieg and T. Höllerer. Augmented Reality: Principles and

Practice. Addison-Wesley Professional, 1st ed., 2016.

[42] L. Szirmay-Kalos, B. Aszódi, I. Lazányi, and M. Premecz. Approximate

Ray-Tracing on the GPU with Distance Impostors. Computer Graphics

Forum (CGF), 24(3):695–704, 2005.

[43] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and

J. McDonald. Real-time Large Scale Dense RGB-D SLAM with Vo-

lumetric Fusion. International Journal of Robotics Research (IJRR),

34(4-5):598–626, 2015.

[44] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leuteneg-

ger. ElasticFusion: Real-Time Dense SLAM and Light Source Estimation.

International Journal of Robotics Research (IJRR), 35(14):1697–1716,

2016.

[45] E. Zhang, M. F. Cohen, and B. Curless. Emptying, Refurnishing, and

Relighting Indoor Spaces. ACM Transactions on Graphics (Proc. SIG-

GRAPH Asia), 35(6):1–14, 2016.

